Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $C_4\times S_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6)(2,5)(3,15)(4,16)(7,12)(8,11)(9,21)(10,22)(13,17)(14,18)(19,23)(20,24), (1,16,5,20,9,23,13,3,18,7,22,11)(2,15,6,19,10,24,14,4,17,8,21,12) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 8: $C_4\times C_2$
Degree 12: $D_6$, $S_3 \times C_4$ x 2
Low degree siblings
12T11 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,21)( 6,22)( 7, 8)( 9,17)(10,18)(13,14)(15,23)(16,24) (19,20)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1, 3, 5, 7, 9,11,13,16,18,20,22,23)( 2, 4, 6, 8,10,12,14,15,17,19,21,24)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 4,13,15)( 2, 3,14,16)( 5,24,18,12)( 6,23,17,11)( 7,10,20,21)( 8, 9,19,22)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9,13,18,22)( 2, 6,10,14,17,21)( 3, 7,11,16,20,23)( 4, 8,12,15,19,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,12)( 8,11)( 9,21)(10,22)(13,17)(14,18)(19,23) (20,24)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 7,13,20)( 2, 8,14,19)( 3, 9,16,22)( 4,10,15,21)( 5,11,18,23)( 6,12,17,24)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $3$ | $4$ | $( 1, 8,13,19)( 2, 7,14,20)( 3,17,16, 6)( 4,18,15, 5)( 9,24,22,12)(10,23,21,11)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,18)( 2,10,17)( 3,11,20)( 4,12,19)( 5,13,22)( 6,14,21)( 7,16,23) ( 8,15,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,22)(10,21)(11,23) (12,24)$ |
| $ 12, 12 $ | $2$ | $12$ | $( 1,16, 5,20, 9,23,13, 3,18, 7,22,11)( 2,15, 6,19,10,24,14, 4,17, 8,21,12)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,20,13, 7)( 2,19,14, 8)( 3,22,16, 9)( 4,21,15,10)( 5,23,18,11)( 6,24,17,12)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 5] |
| Character table: |
2 3 3 2 3 2 3 3 3 2 3 2 3
3 1 . 1 . 1 . 1 . 1 1 1 1
1a 2a 12a 4a 6a 2b 4b 4c 3a 2c 12b 4d
2P 1a 1a 6a 2c 3a 1a 2c 2c 3a 1a 6a 2c
3P 1a 2a 4b 4c 2c 2b 4d 4a 1a 2c 4d 4b
5P 1a 2a 12a 4a 6a 2b 4b 4c 3a 2c 12b 4d
7P 1a 2a 12b 4c 6a 2b 4d 4a 3a 2c 12a 4b
11P 1a 2a 12b 4c 6a 2b 4d 4a 3a 2c 12a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 1 1 1
X.4 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.5 1 -1 A -A -1 1 -A A 1 -1 -A A
X.6 1 -1 -A A -1 1 A -A 1 -1 A -A
X.7 1 1 A A -1 -1 -A -A 1 -1 -A A
X.8 1 1 -A -A -1 -1 A A 1 -1 A -A
X.9 2 . -1 . -1 . 2 . -1 2 -1 2
X.10 2 . 1 . -1 . -2 . -1 2 1 -2
X.11 2 . A . 1 . B . -1 -2 -A -B
X.12 2 . -A . 1 . -B . -1 -2 A B
A = -E(4)
= -Sqrt(-1) = -i
B = -2*E(4)
= -2*Sqrt(-1) = -2i
|