Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $118$ | |
| Group : | $C_3:D_8:C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,6)(2,10,5)(3,11,7)(4,12,8)(13,21,18,14,22,17)(15,23,20,16,24,19), (1,18,8,23,2,17,7,24)(3,15,9,22,4,16,10,21)(5,14,11,20,6,13,12,19), (1,19)(2,20)(3,17)(4,18)(5,15)(6,16)(7,14)(8,13)(9,23)(10,24)(11,21)(12,22) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2 32: $Z_8 : Z_8^\times$ 48: 24T25 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 8: $Z_8 : Z_8^\times$
Degree 12: $(C_6\times C_2):C_2$
Low degree siblings
24T118Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,19)(14,20)(15,21)(16,22)(17,24)(18,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,20)(14,19)(15,22)(16,21)(17,23)(18,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)$ |
| $ 12, 12 $ | $4$ | $12$ | $( 1, 3, 5, 8, 9,11, 2, 4, 6, 7,10,12)(13,15,17,19,22,24,14,16,18,20,21,23)$ |
| $ 12, 12 $ | $4$ | $12$ | $( 1, 3, 5, 8, 9,11, 2, 4, 6, 7,10,12)(13,16,17,20,22,23,14,15,18,19,21,24)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1, 3, 6, 7, 9,11)( 2, 4, 5, 8,10,12)(13,21,18,14,22,17)(15,24,20)(16,23,19)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1, 3, 6, 7, 9,11)( 2, 4, 5, 8,10,12)(13,22,18)(14,21,17)(15,23,20,16,24,19)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9, 2, 6,10)( 3, 8,11, 4, 7,12)(13,17,22,14,18,21)(15,19,24,16,20,23)$ |
| $ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 5, 9, 2, 6,10)( 3, 8,11, 4, 7,12)(13,18,22)(14,17,21)(15,20,24)(16,19,23)$ |
| $ 6, 6, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 6, 9)( 2, 5,10)( 3, 7,11)( 4, 8,12)(13,17,22,14,18,21)(15,19,24,16,20,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 6, 9)( 2, 5,10)( 3, 7,11)( 4, 8,12)(13,18,22)(14,17,21)(15,20,24) (16,19,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,12, 6,11)(13,19,14,20)(15,22,16,21)(17,24,18,23)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,12, 6,11)(13,20,14,19)(15,21,16,22)(17,23,18,24)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1, 9, 6)( 2,10, 5)( 3,12, 7, 4,11, 8)(13,15,18,20,22,24)(14,16,17,19,21,23)$ |
| $ 6, 6, 6, 3, 3 $ | $4$ | $6$ | $( 1, 9, 6)( 2,10, 5)( 3,12, 7, 4,11, 8)(13,16,18,19,22,23)(14,15,17,20,21,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1,13)( 2,14)( 3,23)( 4,24)( 5,21)( 6,22)( 7,19)( 8,20)( 9,18)(10,17)(11,16) (12,15)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $12$ | $4$ | $( 1,13, 2,14)( 3,23, 4,24)( 5,21, 6,22)( 7,19, 8,20)( 9,18,10,17)(11,16,12,15)$ |
| $ 8, 8, 8 $ | $12$ | $8$ | $( 1,13, 7,20, 2,14, 8,19)( 3,24,10,17, 4,23, 9,18)( 5,21,12,16, 6,22,11,15)$ |
| $ 8, 8, 8 $ | $12$ | $8$ | $( 1,13, 8,19, 2,14, 7,20)( 3,24, 9,18, 4,23,10,17)( 5,21,11,15, 6,22,12,16)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 139] |
| Character table: Data not available. |