Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $C_2^2\times S_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,7)(3,21)(4,22)(5,11)(6,12)(9,15)(10,16)(13,19)(14,20)(17,24)(18,23), (1,7)(2,8)(3,5)(4,6)(9,24)(10,23)(11,21)(12,22)(13,20)(14,19)(15,17)(16,18), (1,6)(2,5)(3,15)(4,16)(7,11)(8,12)(9,21)(10,22)(13,17)(14,18)(19,24)(20,23) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $C_2^3$ 12: $D_{6}$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 3: $S_3$
Degree 4: $C_2^2$ x 7
Degree 8: $C_2^3$
Degree 12: $D_6$ x 3, $S_3 \times C_2^2$ x 4
Low degree siblings
12T10 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,21)( 6,22)( 7, 8)( 9,17)(10,18)(13,14)(15,24)(16,23) (19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5,24)( 6,23)( 7,22)( 8,21)( 9,20)(10,19)(11,17)(12,18)(13,16) (14,15)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 4,18,19, 9,11)( 2, 3,17,20,10,12)( 5, 8,22,23,13,15)( 6, 7,21,24,14,16)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 5, 9,13,18,22)( 2, 6,10,14,17,21)( 3, 7,12,16,20,24)( 4, 8,11,15,19,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,11)( 8,12)( 9,21)(10,22)(13,17)(14,18)(19,24) (20,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,24)(10,23)(11,21)(12,22)(13,20)(14,19)(15,17) (16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 8)( 2, 7)( 3,21)( 4,22)( 5,11)( 6,12)( 9,15)(10,16)(13,19)(14,20)(17,24) (18,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,18)( 2,10,17)( 3,12,20)( 4,11,19)( 5,13,22)( 6,14,21)( 7,16,24) ( 8,15,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,22)(10,21)(11,23) (12,24)$ |
| $ 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,15,18, 8, 9,23)( 2,16,17, 7,10,24)( 3, 6,20,21,12,14)( 4, 5,19,22,11,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,19)( 2,20)( 3,10)( 4, 9)( 5,23)( 6,24)( 7,14)( 8,13)(11,18)(12,17)(15,22) (16,21)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 14] |
| Character table: |
2 3 3 3 2 2 3 3 3 2 3 2 3
3 1 . . 1 1 . . 1 1 1 1 1
1a 2a 2b 6a 6b 2c 2d 2e 3a 2f 6c 2g
2P 1a 1a 1a 3a 3a 1a 1a 1a 3a 1a 3a 1a
3P 1a 2a 2b 2g 2f 2c 2d 2e 1a 2f 2e 2g
5P 1a 2a 2b 6a 6b 2c 2d 2e 3a 2f 6c 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
X.3 1 -1 -1 1 1 -1 -1 1 1 1 1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1
X.5 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1
X.6 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1
X.7 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.8 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1
X.9 2 . . -1 -1 . . 2 -1 2 -1 2
X.10 2 . . -1 1 . . -2 -1 -2 1 2
X.11 2 . . 1 -1 . . -2 -1 2 1 -2
X.12 2 . . 1 1 . . 2 -1 -2 -1 -2
|