Group action invariants
| Degree $n$ : | $24$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,4)(5,9)(6,10)(7,11)(8,12)(13,17)(14,18)(15,19)(16,20)(21,22)(23,24), (1,5,12,24)(2,6,11,23)(3,7,14,20)(4,8,13,19)(9,16,21,17)(10,15,22,18) | |
| $|\Aut(F/K)|$: | $24$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $S_4$
Degree 8: $S_4$
Low degree siblings
4T5, 6T7, 6T8, 8T14, 12T8, 12T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,21)( 4,22)( 5, 7)( 6, 8)( 9,19)(10,20)(11,15)(12,16)(13,24)(14,23) (17,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 4,21)( 2, 3,22)( 5,11,19)( 6,12,20)( 7, 9,15)( 8,10,16)(13,23,18) (14,24,17)$ |
| $ 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 5,12,24)( 2, 6,11,23)( 3, 7,14,20)( 4, 8,13,19)( 9,16,21,17)(10,15,22,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,24)( 6,23)( 7,20)( 8,19)( 9,21)(10,22)(15,18) (16,17)$ |
Group invariants
| Order: | $24=2^{3} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [24, 12] |
| Character table: |
2 3 2 . 2 3
3 1 . 1 . .
1a 2a 3a 4a 2b
2P 1a 1a 3a 2b 1a
3P 1a 2a 1a 4a 2b
X.1 1 1 1 1 1
X.2 1 -1 1 -1 1
X.3 2 . -1 . 2
X.4 3 -1 . 1 -1
X.5 3 1 . -1 -1
|