Group action invariants
| Degree $n$ : | $23$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{23}$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
46T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $23$ | $2$ | $( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 3, 5, 7, 9,11,13,15,17,19,21,23, 2, 4, 6, 8,10,12,14,16,18,20,22)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 4, 7,10,13,16,19,22, 2, 5, 8,11,14,17,20,23, 3, 6, 9,12,15,18,21)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 5, 9,13,17,21, 2, 6,10,14,18,22, 3, 7,11,15,19,23, 4, 8,12,16,20)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 6,11,16,21, 3, 8,13,18,23, 5,10,15,20, 2, 7,12,17,22, 4, 9,14,19)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 7,13,19, 2, 8,14,20, 3, 9,15,21, 4,10,16,22, 5,11,17,23, 6,12,18)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 8,15,22, 6,13,20, 4,11,18, 2, 9,16,23, 7,14,21, 5,12,19, 3,10,17)$ |
| $ 23 $ | $2$ | $23$ | $( 1, 9,17, 2,10,18, 3,11,19, 4,12,20, 5,13,21, 6,14,22, 7,15,23, 8,16)$ |
| $ 23 $ | $2$ | $23$ | $( 1,10,19, 5,14,23, 9,18, 4,13,22, 8,17, 3,12,21, 7,16, 2,11,20, 6,15)$ |
| $ 23 $ | $2$ | $23$ | $( 1,11,21, 8,18, 5,15, 2,12,22, 9,19, 6,16, 3,13,23,10,20, 7,17, 4,14)$ |
| $ 23 $ | $2$ | $23$ | $( 1,12,23,11,22,10,21, 9,20, 8,19, 7,18, 6,17, 5,16, 4,15, 3,14, 2,13)$ |
Group invariants
| Order: | $46=2 \cdot 23$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [46, 1] |
| Character table: |
2 1 1 . . . . . . . . . . .
23 1 . 1 1 1 1 1 1 1 1 1 1 1
1a 2a 23a 23b 23c 23d 23e 23f 23g 23h 23i 23j 23k
2P 1a 1a 23b 23d 23f 23h 23j 23k 23i 23g 23e 23c 23a
3P 1a 2a 23c 23f 23i 23k 23h 23e 23b 23a 23d 23g 23j
5P 1a 2a 23e 23j 23h 23c 23b 23g 23k 23f 23a 23d 23i
7P 1a 2a 23g 23i 23b 23e 23k 23d 23c 23j 23f 23a 23h
11P 1a 2a 23k 23a 23j 23b 23i 23c 23h 23d 23g 23e 23f
13P 1a 2a 23j 23c 23g 23f 23d 23i 23a 23k 23b 23h 23e
17P 1a 2a 23f 23k 23e 23a 23g 23j 23d 23b 23h 23i 23c
19P 1a 2a 23d 23h 23k 23g 23c 23a 23e 23i 23j 23f 23b
23P 1a 2a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 1 1 1 1 1 1 1
X.3 2 . A D H E J I C F B G K
X.4 2 . B J E G A F I H K D C
X.5 2 . C B D J K E H G I A F
X.6 2 . D E I F G K B C J H A
X.7 2 . E F K C H A J B G I D
X.8 2 . F C A B I D G J H K E
X.9 2 . G H C I E B A K D F J
X.10 2 . H I B K F J D A E C G
X.11 2 . I K J A C G E D F B H
X.12 2 . J G F H D C K I A E B
X.13 2 . K A G D B H F E C J I
A = E(23)^3+E(23)^20
B = E(23)^4+E(23)^19
C = E(23)^2+E(23)^21
D = E(23)^6+E(23)^17
E = E(23)^11+E(23)^12
F = E(23)+E(23)^22
G = E(23)^7+E(23)^16
H = E(23)^9+E(23)^14
I = E(23)^5+E(23)^18
J = E(23)^8+E(23)^15
K = E(23)^10+E(23)^13
|