Show commands: Magma
Group invariants
| Abstract group: | $D_{11}^2$ |
| |
| Order: | $484=2^{2} \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $9$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,5)(2,4)(6,11)(7,10)(8,9)(13,22)(14,21)(15,20)(16,19)(17,18)$, $(1,13,2,18,3,12,4,17,5,22,6,16,7,21,8,15,9,20,10,14,11,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $22$: $D_{11}$ x 2 $44$: $D_{22}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
22T9 x 4, 44T29 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $11$ | $2$ | $11$ | $( 1,13)( 2,18)( 3,12)( 4,17)( 5,22)( 6,16)( 7,21)( 8,15)( 9,20)(10,14)(11,19)$ |
| 2B | $2^{11}$ | $11$ | $2$ | $11$ | $( 1,22)( 2,17)( 3,12)( 4,18)( 5,13)( 6,19)( 7,14)( 8,20)( 9,15)(10,21)(11,16)$ |
| 2C | $2^{10},1^{2}$ | $121$ | $2$ | $10$ | $( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,18)(13,17)(14,16)(19,22)(20,21)$ |
| 11A1 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11A2 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11A3 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11A4 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 11A5 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11B1 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11B2 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11B3 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11B4 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11B5 | $11^{2}$ | $2$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11C1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 11C2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11C3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11C4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11C5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11D1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11D2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11D3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11D4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11D5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11E1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11E2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11E3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11E4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 11E5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11F1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11F2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11F3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11F4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11F5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11G1 | $11,1^{11}$ | $4$ | $11$ | $10$ | $(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11G2 | $11,1^{11}$ | $4$ | $11$ | $10$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)$ |
| 11G3 | $11,1^{11}$ | $4$ | $11$ | $10$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)$ |
| 11G4 | $11,1^{11}$ | $4$ | $11$ | $10$ | $(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11G5 | $11,1^{11}$ | $4$ | $11$ | $10$ | $(12,18,13,19,14,20,15,21,16,22,17)$ |
| 22A1 | $22$ | $22$ | $22$ | $21$ | $( 1,12, 5,21, 9,19, 2,17, 6,15,10,13, 3,22, 7,20,11,18, 4,16, 8,14)$ |
| 22A3 | $22$ | $22$ | $22$ | $21$ | $( 1,21, 2,15, 3,20, 4,14, 5,19, 6,13, 7,18, 8,12, 9,17,10,22,11,16)$ |
| 22A5 | $22$ | $22$ | $22$ | $21$ | $( 1,19,10,20, 8,21, 6,22, 4,12, 2,13,11,14, 9,15, 7,16, 5,17, 3,18)$ |
| 22A7 | $22$ | $22$ | $22$ | $21$ | $( 1,17, 7,14, 2,22, 8,19, 3,16, 9,13, 4,21,10,18, 5,15,11,12, 6,20)$ |
| 22A9 | $22$ | $22$ | $22$ | $21$ | $( 1,15, 4,19, 7,12,10,16, 2,20, 5,13, 8,17,11,21, 3,14, 6,18, 9,22)$ |
| 22B1 | $22$ | $22$ | $22$ | $21$ | $( 1,16,10,15, 8,14, 6,13, 4,12, 2,22,11,21, 9,20, 7,19, 5,18, 3,17)$ |
| 22B3 | $22$ | $22$ | $22$ | $21$ | $( 1,15, 6,12,11,20, 5,17,10,14, 4,22, 9,19, 3,16, 8,13, 2,21, 7,18)$ |
| 22B5 | $22$ | $22$ | $22$ | $21$ | $( 1,14, 2,20, 3,15, 4,21, 5,16, 6,22, 7,17, 8,12, 9,18,10,13,11,19)$ |
| 22B7 | $22$ | $22$ | $22$ | $21$ | $( 1,20, 4,16, 7,12,10,19, 2,15, 5,22, 8,18,11,14, 3,21, 6,17, 9,13)$ |
| 22B9 | $22$ | $22$ | $22$ | $21$ | $( 1,21, 8,19, 4,17,11,15, 7,13, 3,22,10,20, 6,18, 2,16, 9,14, 5,12)$ |
Malle's constant $a(G)$: $1/10$
Character table
49 x 49 character table
Regular extensions
Data not computed