Show commands: Magma
Group invariants
| Abstract group: | $C_{11}^2:C_4$ |
| |
| Order: | $484=2^{2} \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $8$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,8)(2,7)(3,6)(4,5)(9,11)(12,19)(13,18)(14,17)(15,16)(20,22)$, $(1,21,11,15)(2,16,10,20)(3,22,9,14)(4,17,8,19)(5,12,7,13)(6,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
22T8 x 5, 44T28 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10},1^{2}$ | $121$ | $2$ | $10$ | $( 1, 5)( 2, 4)( 6,11)( 7,10)( 8, 9)(13,22)(14,21)(15,20)(16,19)(17,18)$ |
| 4A1 | $4^{5},2$ | $121$ | $4$ | $16$ | $( 1,22, 5,13)( 2,17, 4,18)( 3,12)( 6,19,11,16)( 7,14,10,21)( 8,20, 9,15)$ |
| 4A-1 | $4^{5},2$ | $121$ | $4$ | $16$ | $( 1,13, 5,22)( 2,18, 4,17)( 3,12)( 6,16,11,19)( 7,21,10,14)( 8,15, 9,20)$ |
| 11A1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11A2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11A3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11A4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 11A5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11B1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11B2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11B3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11B4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11B5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11C1 | $11,1^{11}$ | $4$ | $11$ | $10$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)$ |
| 11C2 | $11,1^{11}$ | $4$ | $11$ | $10$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)$ |
| 11C3 | $11,1^{11}$ | $4$ | $11$ | $10$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)$ |
| 11C4 | $11,1^{11}$ | $4$ | $11$ | $10$ | $(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11C5 | $11,1^{11}$ | $4$ | $11$ | $10$ | $(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11D1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11D2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11D3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11D4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11D5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 11E1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11E2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 11E3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11E4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11E5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11F1 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11F2 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11F3 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11F4 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11F5 | $11^{2}$ | $4$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,13,14,15,16,17,18,19,20,21,22)$ |
Malle's constant $a(G)$: $1/10$
Character table
34 x 34 character table
Regular extensions
Data not computed