Show commands: Magma
Group invariants
| Abstract group: | $C_2\times F_{11}$ |
| |
| Order: | $220=2^{2} \cdot 5 \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $6$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,19,17,6,21,7,11,13,3,10)(2,20,18,5,22,8,12,14,4,9)$, $(1,2)(3,12,7,9,19,4,11,8,10,20)(5,21,14,17,16,6,22,13,18,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $5$: $C_5$ $10$: $C_{10}$ x 3 $20$: 20T3 $110$: $F_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $F_{11}$
Low degree siblings
22T6, 44T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $1$ | $2$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| 2B | $2^{10},1^{2}$ | $11$ | $2$ | $10$ | $( 3,21)( 4,22)( 5,20)( 6,19)( 7,17)( 8,18)( 9,16)(10,15)(11,13)(12,14)$ |
| 2C | $2^{11}$ | $11$ | $2$ | $11$ | $( 1,22)( 2,21)( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)(11,12)$ |
| 5A1 | $5^{4},1^{2}$ | $11$ | $5$ | $16$ | $( 3,10,11,19, 7)( 4, 9,12,20, 8)( 5,18,22,16,14)( 6,17,21,15,13)$ |
| 5A-1 | $5^{4},1^{2}$ | $11$ | $5$ | $16$ | $( 3, 7,19,11,10)( 4, 8,20,12, 9)( 5,14,16,22,18)( 6,13,15,21,17)$ |
| 5A2 | $5^{4},1^{2}$ | $11$ | $5$ | $16$ | $( 3,11, 7,10,19)( 4,12, 8, 9,20)( 5,22,14,18,16)( 6,21,13,17,15)$ |
| 5A-2 | $5^{4},1^{2}$ | $11$ | $5$ | $16$ | $( 3,19,10, 7,11)( 4,20, 9, 8,12)( 5,16,18,14,22)( 6,15,17,13,21)$ |
| 10A1 | $10^{2},1^{2}$ | $11$ | $10$ | $18$ | $( 3, 6,10,17,11,21,19,15, 7,13)( 4, 5, 9,18,12,22,20,16, 8,14)$ |
| 10A-1 | $10^{2},1^{2}$ | $11$ | $10$ | $18$ | $( 3,13, 7,15,19,21,11,17,10, 6)( 4,14, 8,16,20,22,12,18, 9, 5)$ |
| 10A3 | $10^{2},1^{2}$ | $11$ | $10$ | $18$ | $( 3,17,19,13,10,21, 7, 6,11,15)( 4,18,20,14, 9,22, 8, 5,12,16)$ |
| 10A-3 | $10^{2},1^{2}$ | $11$ | $10$ | $18$ | $( 3,15,11, 6, 7,21,10,13,19,17)( 4,16,12, 5, 8,22, 9,14,20,18)$ |
| 10B1 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,17,12,10, 2,13,18,11, 9)( 3,22, 6, 8,15, 4,21, 5, 7,16)(19,20)$ |
| 10B-1 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14, 6, 4,19, 2,13, 5, 3,20)( 7, 9,15,12,21, 8,10,16,11,22)(17,18)$ |
| 10B3 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,11,16, 7, 2,13,12,15, 8)( 3, 9,19,22,17, 4,10,20,21,18)( 5, 6)$ |
| 10B-3 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14, 7,22, 3, 2,13, 8,21, 4)( 5,11,20,15,18, 6,12,19,16,17)( 9,10)$ |
| 10C1 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,15,20, 6,22,10, 8, 3,18)( 2,13,16,19, 5,21, 9, 7, 4,17)(11,12)$ |
| 10C-1 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,19,12, 7, 5,15, 9,17,22)( 2,13,20,11, 8, 6,16,10,18,21)( 3, 4)$ |
| 10C3 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,21,20, 3, 8,17, 9,11, 5)( 2,13,22,19, 4, 7,18,10,12, 6)(15,16)$ |
| 10C-3 | $10^{2},2$ | $11$ | $10$ | $19$ | $( 1,14,10, 4, 6,20, 7,12,17,16)( 2,13, 9, 3, 5,19, 8,11,18,15)(21,22)$ |
| 11A | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 3, 6, 7,10,11,13,15,17,19,21)( 2, 4, 5, 8, 9,12,14,16,18,20,22)$ |
| 22A | $22$ | $10$ | $22$ | $21$ | $( 1,14, 3,16, 6,18, 7,20,10,22,11, 2,13, 4,15, 5,17, 8,19, 9,21,12)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 2B | 2C | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 10C1 | 10C-1 | 10C3 | 10C-3 | 11A | 22A | ||
| Size | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | 10 | |
| 2 P | 1A | 1A | 1A | 1A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 5A2 | 5A-2 | 5A1 | 5A-1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 11A | 11A | |
| 5 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2A | 2A | 2A | 2A | 2C | 2C | 2C | 2C | 11A | 22A | |
| 11 P | 1A | 2A | 2B | 2C | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 10C1 | 10C-1 | 10C3 | 10C-3 | 1A | 2A | |
| Type | |||||||||||||||||||||||
| 220.7.1a | R | ||||||||||||||||||||||
| 220.7.1b | R | ||||||||||||||||||||||
| 220.7.1c | R | ||||||||||||||||||||||
| 220.7.1d | R | ||||||||||||||||||||||
| 220.7.1e1 | C | ||||||||||||||||||||||
| 220.7.1e2 | C | ||||||||||||||||||||||
| 220.7.1e3 | C | ||||||||||||||||||||||
| 220.7.1e4 | C | ||||||||||||||||||||||
| 220.7.1f1 | C | ||||||||||||||||||||||
| 220.7.1f2 | C | ||||||||||||||||||||||
| 220.7.1f3 | C | ||||||||||||||||||||||
| 220.7.1f4 | C | ||||||||||||||||||||||
| 220.7.1g1 | C | ||||||||||||||||||||||
| 220.7.1g2 | C | ||||||||||||||||||||||
| 220.7.1g3 | C | ||||||||||||||||||||||
| 220.7.1g4 | C | ||||||||||||||||||||||
| 220.7.1h1 | C | ||||||||||||||||||||||
| 220.7.1h2 | C | ||||||||||||||||||||||
| 220.7.1h3 | C | ||||||||||||||||||||||
| 220.7.1h4 | C | ||||||||||||||||||||||
| 220.7.10a | R | ||||||||||||||||||||||
| 220.7.10b | R |
Regular extensions
Data not computed