Properties

Label 22T59
Order \(1124000727777607680000\)
n \(22\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $22$
Transitive number $t$ :  $59$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22), (1,2)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 11: None

Low degree siblings

44T2028

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 1,002 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1124000727777607680000=2^{19} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.