Group action invariants
Degree $n$: | $22$ | |
Transitive number $t$: | $59$ | |
Parity: | $-1$ | |
Primitive: | yes | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $1$ | |
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22), (1,2) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: None
Low degree siblings
44T2028Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
There are 1,002 conjugacy classes of elements. Data not shown.
Group invariants
Order: | $1124000727777607680000=2^{19} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | no | |
GAP id: | not available |
Character table: not available. |