Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $48$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,2,14,11,17,8,18,6,15,9,20)(3,22,10,19)(4,21,7,13,5,12), (1,16,6,19,9,20,11,17,5,14,8,22,4,13,3,12)(2,18)(7,15,10,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
24T24600, 44T1454Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 65 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $125452800=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |