Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $38$ | |
| Group : | $M_{22}$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,9,5,10,22,8)(3,20,15,12,19,11,14)(4,21,16,13,7,18,6), (1,5,10)(2,17,12)(3,8,4)(6,16,19)(9,18,21)(14,20,22) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $1155$ | $2$ | $( 1,11)( 3,15)( 4,12)( 5,13)( 6,20)( 8, 9)(14,22)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $12320$ | $3$ | $( 1, 5, 8)( 2, 7,19)( 3,14,17)( 9,11,13)(10,16,21)(15,22,18)$ |
| $ 6, 6, 3, 3, 2, 2 $ | $36960$ | $6$ | $( 1, 9, 5,11, 8,13)( 2,19, 7)( 3,18,14,15,17,22)( 4,12)( 6,20)(10,21,16)$ |
| $ 4, 4, 4, 4, 2, 2, 1, 1 $ | $13860$ | $4$ | $( 1,17)( 2, 4,14,10)( 5,21,16,15)( 6,19, 9, 7)( 8,13,18,12)(11,20)$ |
| $ 8, 8, 4, 2 $ | $55440$ | $8$ | $( 1,11,17,20)( 2, 7, 4, 6,14,19,10, 9)( 3,22)( 5,18,21,12,16, 8,15,13)$ |
| $ 4, 4, 4, 4, 2, 2, 1, 1 $ | $27720$ | $4$ | $( 1, 5, 9, 4)( 3,17,22, 6)( 7,16)( 8,12,11,13)(10,19)(14,20,15,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $88704$ | $5$ | $( 1,10, 7, 5,11)( 2, 9,18,14,19)( 3,21,20,17,15)( 4, 6, 8,16,22)$ |
| $ 7, 7, 7, 1 $ | $63360$ | $7$ | $( 1, 7,16, 2,13,12, 9)( 3,17, 8,10,18, 4,20)( 5, 6,15,19,22,21,11)$ |
| $ 7, 7, 7, 1 $ | $63360$ | $7$ | $( 1, 9,12,13, 2,16, 7)( 3,20, 4,18,10, 8,17)( 5,11,21,22,19,15, 6)$ |
| $ 11, 11 $ | $40320$ | $11$ | $( 1, 7,12,13,14, 3,10,20,19,15, 5)( 2, 4, 9,11,21,22,16,18, 8, 6,17)$ |
| $ 11, 11 $ | $40320$ | $11$ | $( 1, 5,15,19,20,10, 3,14,13,12, 7)( 2,17, 6, 8,18,16,22,21,11, 9, 4)$ |
Group invariants
| Order: | $443520=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 7 7 2 2 5 . . . . . 3 4
3 2 1 2 1 . . . . . . . .
5 1 . . . . . . . . 1 . .
7 1 . . . . 1 1 . . . . .
11 1 . . . . . . 1 1 . . .
1a 2a 3a 6a 4a 7a 7b 11a 11b 5a 8a 4b
2P 1a 1a 3a 3a 2a 7a 7b 11b 11a 5a 4a 2a
3P 1a 2a 1a 2a 4a 7b 7a 11a 11b 5a 8a 4b
5P 1a 2a 3a 6a 4a 7b 7a 11a 11b 1a 8a 4b
7P 1a 2a 3a 6a 4a 1a 1a 11b 11a 5a 8a 4b
11P 1a 2a 3a 6a 4a 7a 7b 1a 1a 5a 8a 4b
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 21 5 3 -1 1 . . -1 -1 1 -1 1
X.3 45 -3 . . 1 A /A 1 1 . -1 1
X.4 45 -3 . . 1 /A A 1 1 . -1 1
X.5 55 7 1 1 3 -1 -1 . . . 1 -1
X.6 99 3 . . 3 1 1 . . -1 -1 -1
X.7 154 10 1 1 -2 . . . . -1 . 2
X.8 210 2 3 -1 -2 . . 1 1 . . -2
X.9 231 7 -3 1 -1 . . . . 1 -1 -1
X.10 280 -8 1 1 . . . B /B . . .
X.11 280 -8 1 1 . . . /B B . . .
X.12 385 1 -2 -2 1 . . . . . 1 1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
B = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10
= (-1-Sqrt(-11))/2 = -1-b11
|