Show commands: Magma
Group invariants
Abstract group: | $C_2^{10}.C_{22}$ |
| |
Order: | $22528=2^{11} \cdot 11$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $22$ |
| |
Transitive number $t$: | $28$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,9,17,4,11,20,6,13,21,7,16,2,10,18,3,12,19,5,14,22,8,15)$, $(1,14,4,15,6,18,7,20,10,21,11)(2,13,3,16,5,17,8,19,9,22,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $11$: $C_{11}$ $22$: 22T1 $11264$: 22T23 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: $C_{11}$
Low degree siblings
22T28 x 92, 44T146 x 93, 44T149 x 93, 44T150 x 465, 44T151 x 465, 44T152 x 465, 44T153 x 465, 44T154 x 465, 44T155 x 465, 44T156 x 930, 44T157 x 930, 44T158 x 930, 44T159 x 930, 44T160 x 930, 44T161 x 930, 44T162 x 930, 44T163 x 930, 44T164 x 930, 44T165 x 930, 44T166 x 930, 44T167 x 930, 44T168 x 930, 44T169 x 930, 44T170 x 930, 44T171 x 930, 44T172 x 930, 44T173 x 930, 44T174 x 930, 44T175 x 930, 44T176 x 930, 44T177 x 930, 44T178 x 930, 44T179 x 930, 44T180 x 930, 44T181 x 930, 44T182 x 930, 44T183 x 930, 44T184 x 930, 44T185 x 930, 44T186 x 930, 44T187 x 930, 44T188 x 930, 44T189 x 930, 44T190 x 930, 44T191 x 930, 44T192 x 930, 44T193 x 930, 44T194 x 930, 44T195 x 930, 44T196 x 930, 44T197 x 930, 44T198 x 930, 44T199 x 930, 44T200 x 930, 44T201 x 930, 44T202 x 930, 44T203 x 930Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed