Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $28$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,17,4,11,20,6,13,21,7,16,2,10,18,3,12,19,5,14,22,8,15), (1,14,4,15,6,18,7,20,10,21,11)(2,13,3,16,5,17,8,19,9,22,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 11: $C_{11}$ 22: 22T1 11264: 22T23 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: $C_{11}$
Low degree siblings
22T28 x 92, 44T146 x 93, 44T149 x 93, 44T150 x 465, 44T151 x 465, 44T152 x 465, 44T153 x 465, 44T154 x 465, 44T155 x 465, 44T156 x 930, 44T157 x 930, 44T158 x 930, 44T159 x 930, 44T160 x 930, 44T161 x 930, 44T162 x 930, 44T163 x 930, 44T164 x 930, 44T165 x 930, 44T166 x 930, 44T167 x 930, 44T168 x 930, 44T169 x 930, 44T170 x 930, 44T171 x 930, 44T172 x 930, 44T173 x 930, 44T174 x 930, 44T175 x 930, 44T176 x 930, 44T177 x 930, 44T178 x 930, 44T179 x 930, 44T180 x 930, 44T181 x 930, 44T182 x 930, 44T183 x 930, 44T184 x 930, 44T185 x 930, 44T186 x 930, 44T187 x 930, 44T188 x 930, 44T189 x 930, 44T190 x 930, 44T191 x 930, 44T192 x 930, 44T193 x 930, 44T194 x 930, 44T195 x 930, 44T196 x 930, 44T197 x 930, 44T198 x 930, 44T199 x 930, 44T200 x 930, 44T201 x 930, 44T202 x 930, 44T203 x 930Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 208 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $22528=2^{11} \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |