Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $27$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,22,17,16,12,5,3,7,14,9,19,2,21,18,15,11,6,4,8,13,10,20), (1,4,10,5,19,22)(2,3,9,6,20,21)(7,17,13,8,18,14)(11,15)(12,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 7920: $M_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $M_{11}$
Low degree siblings
22T26, 24T12204, 44T140Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $165$ | $2$ | $( 1,20)( 2,19)( 3,13)( 4,14)( 5, 6)( 7,15)( 8,16)( 9,10)(11,21)(12,22)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $165$ | $2$ | $( 1,19)( 2,20)( 3,14)( 4,13)( 7,16)( 8,15)(11,22)(12,21)$ |
| $ 4, 4, 4, 4, 2, 2, 2 $ | $990$ | $4$ | $( 1,11,19,22)( 2,12,20,21)( 3,16,14, 7)( 4,15,13, 8)( 5, 6)( 9,10)(17,18)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $990$ | $4$ | $( 1,12,19,21)( 2,11,20,22)( 3,15,14, 8)( 4,16,13, 7)$ |
| $ 8, 8, 2, 2, 1, 1 $ | $990$ | $8$ | $( 1, 8,12, 3,19,15,21,14)( 2, 7,11, 4,20,16,22,13)( 9,18)(10,17)$ |
| $ 8, 8, 2, 2, 2 $ | $990$ | $8$ | $( 1, 7,12, 4,19,16,21,13)( 2, 8,11, 3,20,15,22,14)( 5, 6)( 9,17)(10,18)$ |
| $ 8, 8, 2, 2, 2 $ | $990$ | $8$ | $( 1,13,21,16,19, 4,12, 7)( 2,14,22,15,20, 3,11, 8)( 5, 6)( 9,17)(10,18)$ |
| $ 8, 8, 2, 2, 1, 1 $ | $990$ | $8$ | $( 1,14,21,15,19, 3,12, 8)( 2,13,22,16,20, 4,11, 7)( 9,18)(10,17)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $440$ | $3$ | $( 1, 6,17)( 2, 5,18)( 3,15, 8)( 4,16, 7)(11,13,22)(12,14,21)$ |
| $ 6, 6, 6, 2, 2 $ | $440$ | $6$ | $( 1, 5,17, 2, 6,18)( 3,16, 8, 4,15, 7)( 9,10)(11,14,22,12,13,21)(19,20)$ |
| $ 22 $ | $720$ | $22$ | $( 1, 7,21,18,10,16, 6,20, 3,11,14, 2, 8,22,17, 9,15, 5,19, 4,12,13)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1, 8,21,17,10,15, 6,19, 3,12,14)( 2, 7,22,18, 9,16, 5,20, 4,11,13)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1,14,12, 3,19, 6,15,10,17,21, 8)( 2,13,11, 4,20, 5,16, 9,18,22, 7)$ |
| $ 22 $ | $720$ | $22$ | $( 1,13,12, 4,19, 5,15, 9,17,22, 8, 2,14,11, 3,20, 6,16,10,18,21, 7)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $1584$ | $5$ | $( 1,10, 3,21,12)( 2, 9, 4,22,11)( 5,16,13,18, 7)( 6,15,14,17, 8)$ |
| $ 10, 10, 2 $ | $1584$ | $10$ | $( 1, 9, 3,22,12, 2,10, 4,21,11)( 5,15,13,17, 7, 6,16,14,18, 8)(19,20)$ |
| $ 6, 6, 6, 2, 2 $ | $1320$ | $6$ | $( 1,16,14,18,10, 5)( 2,15,13,17, 9, 6)( 3,20)( 4,19)( 7,21,11, 8,22,12)$ |
| $ 6, 6, 3, 3, 2, 2 $ | $1320$ | $6$ | $( 1,15,14,17,10, 6)( 2,16,13,18, 9, 5)( 3,19)( 4,20)( 7,22,11)( 8,21,12)$ |
Group invariants
| Order: | $15840=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 5 5 5 4 4 4 4 4 4 1 1 1 1 1 1 2 2 2 2
3 2 2 1 1 . . . . . . . . . . . . 2 2 1 1
5 1 1 . . . . . . . . 1 1 . . . . . . . .
11 1 1 . . . . . . . . . . 1 1 1 1 . . . .
1a 2a 2b 2c 4a 4b 8a 8b 8c 8d 5a 10a 22a 11a 22b 11b 3a 6a 6b 6c
2P 1a 1a 1a 1a 2b 2b 4b 4b 4b 4b 5a 5a 11b 11b 11a 11a 3a 3a 3a 3a
3P 1a 2a 2b 2c 4a 4b 8a 8b 8c 8d 5a 10a 22a 11a 22b 11b 1a 2a 2c 2b
5P 1a 2a 2b 2c 4a 4b 8c 8d 8a 8b 1a 2a 22a 11a 22b 11b 3a 6a 6b 6c
7P 1a 2a 2b 2c 4a 4b 8c 8d 8a 8b 5a 10a 22b 11b 22a 11a 3a 6a 6b 6c
11P 1a 2a 2b 2c 4a 4b 8a 8b 8c 8d 5a 10a 2a 1a 2a 1a 3a 6a 6b 6c
13P 1a 2a 2b 2c 4a 4b 8c 8d 8a 8b 5a 10a 22b 11b 22a 11a 3a 6a 6b 6c
17P 1a 2a 2b 2c 4a 4b 8a 8b 8c 8d 5a 10a 22b 11b 22a 11a 3a 6a 6b 6c
19P 1a 2a 2b 2c 4a 4b 8a 8b 8c 8d 5a 10a 22b 11b 22a 11a 3a 6a 6b 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1
X.3 10 10 2 2 2 2 . . . . . . -1 -1 -1 -1 1 1 -1 -1
X.4 10 -10 2 -2 -2 2 . . . . . . 1 -1 1 -1 1 -1 1 -1
X.5 10 -10 -2 2 . . A -A -A A . . 1 -1 1 -1 1 -1 -1 1
X.6 10 -10 -2 2 . . -A A A -A . . 1 -1 1 -1 1 -1 -1 1
X.7 10 10 -2 -2 . . A A -A -A . . -1 -1 -1 -1 1 1 1 1
X.8 10 10 -2 -2 . . -A -A A A . . -1 -1 -1 -1 1 1 1 1
X.9 11 11 3 3 -1 -1 -1 -1 -1 -1 1 1 . . . . 2 2 . .
X.10 11 -11 3 -3 1 -1 -1 1 -1 1 1 -1 . . . . 2 -2 . .
X.11 16 -16 . . . . . . . . 1 -1 B -B /B -/B -2 2 . .
X.12 16 -16 . . . . . . . . 1 -1 /B -/B B -B -2 2 . .
X.13 16 16 . . . . . . . . 1 1 -/B -/B -B -B -2 -2 . .
X.14 16 16 . . . . . . . . 1 1 -B -B -/B -/B -2 -2 . .
X.15 44 44 4 4 . . . . . . -1 -1 . . . . -1 -1 1 1
X.16 44 -44 4 -4 . . . . . . -1 1 . . . . -1 1 -1 1
X.17 45 45 -3 -3 1 1 -1 -1 -1 -1 . . 1 1 1 1 . . . .
X.18 45 -45 -3 3 -1 1 -1 1 -1 1 . . -1 1 -1 1 . . . .
X.19 55 55 -1 -1 -1 -1 1 1 1 1 . . . . . . 1 1 -1 -1
X.20 55 -55 -1 1 1 -1 1 -1 1 -1 . . . . . . 1 -1 1 -1
A = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
B = -E(11)-E(11)^3-E(11)^4-E(11)^5-E(11)^9
= (1-Sqrt(-11))/2 = -b11
|