Show commands: Magma
Group invariants
| Abstract group: | $C_2\times M_{11}$ |
| |
| Order: | $15840=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $27$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,22,17,16,12,5,3,7,14,9,19,2,21,18,15,11,6,4,8,13,10,20)$, $(1,4,10,5,19,22)(2,3,9,6,20,21)(7,17,13,8,18,14)(11,15)(12,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $7920$: $M_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $M_{11}$
Low degree siblings
22T26, 24T12204, 44T140Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $1$ | $2$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| 2B | $2^{8},1^{6}$ | $165$ | $2$ | $8$ | $( 1,14)( 2,13)( 5,11)( 6,12)( 7,16)( 8,15)(17,21)(18,22)$ |
| 2C | $2^{11}$ | $165$ | $2$ | $11$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,10)( 6, 9)(11,12)(15,20)(16,19)(17,18)(21,22)$ |
| 3A | $3^{6},1^{4}$ | $440$ | $3$ | $12$ | $( 3,14,10)( 4,13, 9)( 5,22,11)( 6,21,12)( 7,18,16)( 8,17,15)$ |
| 4A | $4^{4},1^{6}$ | $990$ | $4$ | $12$ | $( 1,21,14,17)( 2,22,13,18)( 5, 7,11,16)( 6, 8,12,15)$ |
| 4B | $4^{4},2^{3}$ | $990$ | $4$ | $15$ | $( 1, 2)( 3, 4)( 5,14,18, 8)( 6,13,17, 7)( 9,19,11,15)(10,20,12,16)(21,22)$ |
| 5A | $5^{4},1^{2}$ | $1584$ | $5$ | $16$ | $( 1,12, 3,21,15)( 2,11, 4,22,16)( 5,20,13, 7, 9)( 6,19,14, 8,10)$ |
| 6A | $6^{3},2^{2}$ | $440$ | $6$ | $17$ | $( 1, 9, 8, 2,10, 7)( 3,11,19, 4,12,20)( 5,21,18, 6,22,17)(13,14)(15,16)$ |
| 6B | $6^{2},3^{2},2^{2}$ | $1320$ | $6$ | $16$ | $( 1,19)( 2,20)( 3, 6,14,21,10,12)( 4, 5,13,22, 9,11)( 7,16,18)( 8,15,17)$ |
| 6C | $6^{3},2^{2}$ | $1320$ | $6$ | $17$ | $( 1,20, 3, 7,15,13)( 2,19, 4, 8,16,14)( 5,10)( 6, 9)(11,21,18,12,22,17)$ |
| 8A1 | $8^{2},2^{3}$ | $990$ | $8$ | $17$ | $( 1,16,21, 5,14, 7,17,11)( 2,15,22, 6,13, 8,18,12)( 3, 9)( 4,10)(19,20)$ |
| 8A-1 | $8^{2},2^{3}$ | $990$ | $8$ | $17$ | $( 1,11,17, 7,14, 5,21,16)( 2,12,18, 8,13, 6,22,15)( 3, 9)( 4,10)(19,20)$ |
| 8B1 | $8^{2},2^{2},1^{2}$ | $990$ | $8$ | $16$ | $( 1,21)( 2,22)( 5,13,20, 9,18, 7,16,11)( 6,14,19,10,17, 8,15,12)$ |
| 8B-1 | $8^{2},2^{2},1^{2}$ | $990$ | $8$ | $16$ | $( 1,21)( 2,22)( 5,11,16, 7,18, 9,20,13)( 6,12,15, 8,17,10,19,14)$ |
| 10A | $10^{2},2$ | $1584$ | $10$ | $19$ | $( 1,22,12,16, 3, 2,21,11,15, 4)( 5, 8,20,10,13, 6, 7,19, 9,14)(17,18)$ |
| 11A1 | $11^{2}$ | $720$ | $11$ | $20$ | $( 1,15,14, 6, 3,12,21,17,10,19, 8)( 2,16,13, 5, 4,11,22,18, 9,20, 7)$ |
| 11A-1 | $11^{2}$ | $720$ | $11$ | $20$ | $( 1, 8,19,10,17,21,12, 3, 6,14,15)( 2, 7,20, 9,18,22,11, 4, 5,13,16)$ |
| 22A1 | $22$ | $720$ | $22$ | $21$ | $( 1,22,15,18,14, 9, 6,20, 3, 7,12, 2,21,16,17,13,10, 5,19, 4, 8,11)$ |
| 22A-1 | $22$ | $720$ | $22$ | $21$ | $( 1,11, 8, 4,19, 5,10,13,17,16,21, 2,12, 7, 3,20, 6, 9,14,18,15,22)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 3A | 4A | 4B | 5A | 6A | 6B | 6C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 11A1 | 11A-1 | 22A1 | 22A-1 | ||
| Size | 1 | 1 | 165 | 165 | 440 | 990 | 990 | 1584 | 440 | 1320 | 1320 | 990 | 990 | 990 | 990 | 1584 | 720 | 720 | 720 | 720 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 2B | 2B | 5A | 3A | 3A | 3A | 4A | 4A | 4A | 4A | 5A | 11A-1 | 11A1 | 11A1 | 11A-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 4A | 4B | 5A | 2A | 2B | 2C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 11A1 | 11A-1 | 22A1 | 22A-1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 4A | 4B | 1A | 6A | 6B | 6C | 8A-1 | 8A1 | 8B-1 | 8B1 | 2A | 11A1 | 11A-1 | 22A1 | 22A-1 | |
| 11 P | 1A | 2A | 2B | 2C | 3A | 4A | 4B | 5A | 6A | 6B | 6C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 1A | 1A | 2A | 2A | |
| Type | |||||||||||||||||||||
| 15840.q.1a | R | ||||||||||||||||||||
| 15840.q.1b | R | ||||||||||||||||||||
| 15840.q.10a | R | ||||||||||||||||||||
| 15840.q.10b | R | ||||||||||||||||||||
| 15840.q.10c1 | C | ||||||||||||||||||||
| 15840.q.10c2 | C | ||||||||||||||||||||
| 15840.q.10d1 | C | ||||||||||||||||||||
| 15840.q.10d2 | C | ||||||||||||||||||||
| 15840.q.11a | R | ||||||||||||||||||||
| 15840.q.11b | R | ||||||||||||||||||||
| 15840.q.16a1 | C | ||||||||||||||||||||
| 15840.q.16a2 | C | ||||||||||||||||||||
| 15840.q.16b1 | C | ||||||||||||||||||||
| 15840.q.16b2 | C | ||||||||||||||||||||
| 15840.q.44a | R | ||||||||||||||||||||
| 15840.q.44b | R | ||||||||||||||||||||
| 15840.q.45a | R | ||||||||||||||||||||
| 15840.q.45b | R | ||||||||||||||||||||
| 15840.q.55a | R | ||||||||||||||||||||
| 15840.q.55b | R |
Regular extensions
Data not computed