Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $26$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,21,14,15,10,8,12,3)(2,22,13,16,9,7,11,4)(5,20,6,19)(17,18), (1,3,5,11,18,2,4,6,12,17)(7,16,20,22,14,8,15,19,21,13)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 7920: $M_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: $M_{11}$
Low degree siblings
22T27, 24T12204, 44T140Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| $ 22 $ | $720$ | $22$ | $( 1,10,18, 4,20, 8,22,13,11,15, 6, 2, 9,17, 3,19, 7,21,14,12,16, 5)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1, 9,18, 3,20, 7,22,14,11,16, 6)( 2,10,17, 4,19, 8,21,13,12,15, 5)$ |
| $ 22 $ | $720$ | $22$ | $( 1, 5,16,12,14,21, 7,19, 3,17, 9, 2, 6,15,11,13,22, 8,20, 4,18,10)$ |
| $ 11, 11 $ | $720$ | $11$ | $( 1, 6,16,11,14,22, 7,20, 3,18, 9)( 2, 5,15,12,13,21, 8,19, 4,17,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $165$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,10)(11,21)(12,22)(13,14)(15,17)(16,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $165$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)(11,22)(12,21)(15,18)(16,17)$ |
| $ 4, 4, 4, 4, 2, 2, 1, 1 $ | $990$ | $4$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,10)(11,15,22,18)(12,16,21,17)(13,14)$ |
| $ 4, 4, 4, 4, 2, 1, 1, 1, 1 $ | $990$ | $4$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)(11,16,22,17)(12,15,21,18)(19,20)$ |
| $ 8, 8, 4, 2 $ | $990$ | $8$ | $( 1,18, 5,11, 4,15, 7,22)( 2,17, 6,12, 3,16, 8,21)( 9,13,10,14)(19,20)$ |
| $ 8, 8, 4, 1, 1 $ | $990$ | $8$ | $( 1,17, 5,12, 4,16, 7,21)( 2,18, 6,11, 3,15, 8,22)( 9,14,10,13)$ |
| $ 8, 8, 4, 2 $ | $990$ | $8$ | $( 1,22, 7,15, 4,11, 5,18)( 2,21, 8,16, 3,12, 6,17)( 9,14,10,13)(19,20)$ |
| $ 8, 8, 4, 1, 1 $ | $990$ | $8$ | $( 1,21, 7,16, 4,12, 5,17)( 2,22, 8,15, 3,11, 6,18)( 9,13,10,14)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $440$ | $3$ | $( 1,18,21)( 2,17,22)( 3,10,13)( 4, 9,14)( 5,15,20)( 6,16,19)$ |
| $ 6, 6, 6, 2, 2 $ | $440$ | $6$ | $( 1,17,21, 2,18,22)( 3, 9,13, 4,10,14)( 5,16,20, 6,15,19)( 7, 8)(11,12)$ |
| $ 6, 6, 6, 2, 2 $ | $1320$ | $6$ | $( 1,15,18,20,21, 5)( 2,16,17,19,22, 6)( 3,14,10, 4,13, 9)( 7,11)( 8,12)$ |
| $ 6, 6, 3, 3, 2, 2 $ | $1320$ | $6$ | $( 1,16,18,19,21, 6)( 2,15,17,20,22, 5)( 3,13,10)( 4,14, 9)( 7,12)( 8,11)$ |
| $ 10, 10, 2 $ | $1584$ | $10$ | $( 1,18,15, 8,19, 2,17,16, 7,20)( 3, 4)( 5,11,14,21,10, 6,12,13,22, 9)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $1584$ | $5$ | $( 1,17,15, 7,19)( 2,18,16, 8,20)( 5,12,14,22,10)( 6,11,13,21, 9)$ |
Group invariants
| Order: | $15840=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 5 1 1 1 1 1 1 5 5 4 4 4 4 4 4 2 2 2 2
3 2 2 . . . . . . 1 1 . . . . . . 2 2 1 1
5 1 1 . . . . 1 1 . . . . . . . . . . . .
11 1 1 1 1 1 1 . . . . . . . . . . . . . .
1a 2a 11a 22a 22b 11b 10a 5a 2b 2c 4a 4b 8a 8b 8c 8d 6a 3a 6b 6c
2P 1a 1a 11b 11b 11a 11a 5a 5a 1a 1a 2b 2b 4a 4a 4a 4a 3a 3a 3a 3a
3P 1a 2a 11a 22a 22b 11b 10a 5a 2b 2c 4a 4b 8a 8b 8c 8d 2a 1a 2b 2c
5P 1a 2a 11a 22a 22b 11b 2a 1a 2b 2c 4a 4b 8d 8c 8b 8a 6a 3a 6b 6c
7P 1a 2a 11b 22b 22a 11a 10a 5a 2b 2c 4a 4b 8d 8c 8b 8a 6a 3a 6b 6c
11P 1a 2a 1a 2a 2a 1a 10a 5a 2b 2c 4a 4b 8a 8b 8c 8d 6a 3a 6b 6c
13P 1a 2a 11b 22b 22a 11a 10a 5a 2b 2c 4a 4b 8d 8c 8b 8a 6a 3a 6b 6c
17P 1a 2a 11b 22b 22a 11a 10a 5a 2b 2c 4a 4b 8a 8b 8c 8d 6a 3a 6b 6c
19P 1a 2a 11b 22b 22a 11a 10a 5a 2b 2c 4a 4b 8a 8b 8c 8d 6a 3a 6b 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
X.3 10 10 -1 -1 -1 -1 . . 2 2 2 2 . . . . 1 1 -1 -1
X.4 10 -10 -1 1 1 -1 . . 2 -2 2 -2 . . . . -1 1 -1 1
X.5 10 -10 -1 1 1 -1 . . -2 2 . . B -B B -B -1 1 1 -1
X.6 10 -10 -1 1 1 -1 . . -2 2 . . -B B -B B -1 1 1 -1
X.7 10 10 -1 -1 -1 -1 . . -2 -2 . . B B -B -B 1 1 1 1
X.8 10 10 -1 -1 -1 -1 . . -2 -2 . . -B -B B B 1 1 1 1
X.9 11 11 . . . . 1 1 3 3 -1 -1 -1 -1 -1 -1 2 2 . .
X.10 11 -11 . . . . -1 1 3 -3 -1 1 1 -1 -1 1 -2 2 . .
X.11 16 -16 A -A -/A /A -1 1 . . . . . . . . 2 -2 . .
X.12 16 -16 /A -/A -A A -1 1 . . . . . . . . 2 -2 . .
X.13 16 16 A A /A /A 1 1 . . . . . . . . -2 -2 . .
X.14 16 16 /A /A A A 1 1 . . . . . . . . -2 -2 . .
X.15 44 44 . . . . -1 -1 4 4 . . . . . . -1 -1 1 1
X.16 44 -44 . . . . 1 -1 4 -4 . . . . . . 1 -1 1 -1
X.17 45 45 1 1 1 1 . . -3 -3 1 1 -1 -1 -1 -1 . . . .
X.18 45 -45 1 -1 -1 1 . . -3 3 1 -1 1 -1 -1 1 . . . .
X.19 55 55 . . . . . . -1 -1 -1 -1 1 1 1 1 1 1 -1 -1
X.20 55 -55 . . . . . . -1 1 -1 1 -1 1 1 -1 -1 1 -1 1
A = E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10
= (-1-Sqrt(-11))/2 = -1-b11
B = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
|