Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $25$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,3,5,2)(4,9,7,10,11)(12,22,13,20,17)(14,18,21,15,16), (1,10)(2,9)(3,8)(4,7)(5,6)(12,14,19,15,16,13,22,17,21,20), (1,22,6,18,10,17,11,14,3,16)(2,19,9,20,8,12,5,21,7,15)(4,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 5: $C_5$ 10: $D_{5}$, $C_{10}$ x 3 20: $D_{10}$, 20T3 50: $D_5\times C_5$ 100: 20T24 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
44T139Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 11, 11 $ | $50$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,14,16,18,20,22,13,15,17,19,21)$ |
| $ 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $11$ | $(12,19,15,22,18,14,21,17,13,20,16)$ |
| $ 11, 11 $ | $50$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,21,19,17,15,13,22,20,18,16,14)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 5, 6,10, 4)( 3, 9,11, 8, 7)(13,21,16,15,17)(14,19,20,18,22)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)(13,16,17,21,15)(14,20,22,19,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)(13,17,15,16,21)(14,22,18,20,19)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2,10, 5, 4, 6)( 3, 8, 9, 7,11)(13,15,21,17,16)(14,18,19,22,20)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $22$ | $5$ | $(13,17,15,16,21)(14,22,18,20,19)$ |
| $ 11, 5, 5, 1 $ | $220$ | $55$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,14,13,19,16)(15,18,22,20,21)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $22$ | $5$ | $( 2, 5, 6,10, 4)( 3, 9,11, 8, 7)$ |
| $ 11, 5, 5, 1 $ | $220$ | $55$ | $( 1, 6, 4, 7, 8)( 2,10, 9, 5,11)(12,14,16,18,20,22,13,15,17,19,21)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)(13,21,16,15,17)(14,19,20,18,22)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $121$ | $5$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)(13,15,21,17,16)(14,18,19,22,20)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $22$ | $5$ | $(13,15,21,17,16)(14,18,19,22,20)$ |
| $ 11, 5, 5, 1 $ | $220$ | $55$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,14,20,16,15)(13,17,18,21,19)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)(13,16,17,21,15)(14,20,22,19,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $121$ | $5$ | $( 2,10, 5, 4, 6)( 3, 8, 9, 7,11)(13,21,16,15,17)(14,19,20,18,22)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $22$ | $5$ | $(13,21,16,15,17)(14,19,20,18,22)$ |
| $ 11, 5, 5, 1 $ | $220$ | $55$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,14,21,18,13)(15,19,22,16,17)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $121$ | $5$ | $( 2, 5, 6,10, 4)( 3, 9,11, 8, 7)(13,16,17,21,15)(14,20,22,19,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $121$ | $5$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)(13,17,15,16,21)(14,22,18,20,19)$ |
| $ 10, 2, 2, 2, 2, 2, 1, 1 $ | $242$ | $10$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,20,21,18,16,22,15,14,17,19)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 8, 6, 3, 4,11, 5, 7,10, 9)(13,18,15,19,21,22,17,20,16,14)$ |
| $ 10, 2, 2, 2, 2, 2, 1, 1 $ | $242$ | $10$ | $( 2, 7, 4, 8,10,11, 6, 9, 5, 3)(13,22)(14,21)(15,20)(16,19)(17,18)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 9,10, 7, 5,11, 4, 3, 6, 8)(13,19,17,14,15,22,16,18,21,20)$ |
| $ 10, 10, 1, 1 $ | $121$ | $10$ | $( 2, 3, 5, 9, 6,11,10, 8, 4, 7)(13,14,16,20,17,22,21,19,15,18)$ |
| $ 10, 2, 2, 2, 2, 2, 1, 1 $ | $242$ | $10$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,19,17,14,15,22,16,18,21,20)$ |
| $ 10, 10, 1, 1 $ | $121$ | $10$ | $( 2, 7, 4, 8,10,11, 6, 9, 5, 3)(13,18,15,19,21,22,17,20,16,14)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 9,10, 7, 5,11, 4, 3, 6, 8)(13,14,16,20,17,22,21,19,15,18)$ |
| $ 10, 2, 2, 2, 2, 2, 1, 1 $ | $242$ | $10$ | $( 2, 3, 5, 9, 6,11,10, 8, 4, 7)(13,22)(14,21)(15,20)(16,19)(17,18)$ |
| $ 10, 10, 1, 1 $ | $121$ | $10$ | $( 2, 8, 6, 3, 4,11, 5, 7,10, 9)(13,19,17,14,15,22,16,18,21,20)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 7, 4, 8,10,11, 6, 9, 5, 3)(13,20,21,18,16,22,15,14,17,19)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 3, 5, 9, 6,11,10, 8, 4, 7)(13,18,15,19,21,22,17,20,16,14)$ |
| $ 10, 10, 1, 1 $ | $121$ | $10$ | $( 2, 9,10, 7, 5,11, 4, 3, 6, 8)(13,20,21,18,16,22,15,14,17,19)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 3, 5, 9, 6,11,10, 8, 4, 7)(13,19,17,14,15,22,16,18,21,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $121$ | $2$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,22, 6,18,10,17,11,14, 3,16)( 2,19, 9,20, 8,12, 5,21, 7,15)( 4,13)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,14, 9,18, 4,21, 3,15, 5,16)( 2,20, 7,17, 8,12, 6,22,10,13)(11,19)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,19, 8,12,10,21, 9,22, 4,16)( 2,18)( 3,17, 7,13, 5,15, 6,14,11,20)$ |
| $ 22 $ | $550$ | $22$ | $( 1,18, 6,20,11,22, 5,13,10,15, 4,17, 9,19, 3,21, 8,12, 2,14, 7,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $55$ | $2$ | $( 1,17)( 2,13)( 3,20)( 4,16)( 5,12)( 6,19)( 7,15)( 8,22)( 9,18)(10,14)(11,21)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,20, 9,14, 8,12, 4,15,10,16)( 2,22)( 3,13, 6,19, 7,21,11,18, 5,17)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,15,11,17, 2,13, 9,21, 6,16)( 3,22, 7,14,10,19, 4,20, 5,18)( 8,12)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,17, 5,22, 3,14, 4,18, 9,16)( 2,21,10,20, 6,15, 8,12, 7,19)(11,13)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,13, 8,12, 3,19, 5,14, 2,16)( 4,22, 9,15, 7,20,10,18,11,21)( 6,17)$ |
| $ 10, 10, 2 $ | $605$ | $10$ | $( 1,16)( 2,17, 4,19,10,14, 6,21, 5,20)( 3,18, 7,22, 8,12,11,15, 9,13)$ |
| $ 22 $ | $550$ | $22$ | $( 1,21, 2,15, 3,20, 4,14, 5,19, 6,13, 7,18, 8,12, 9,17,10,22,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $55$ | $2$ | $( 1,19)( 2,13)( 3,18)( 4,12)( 5,17)( 6,22)( 7,16)( 8,21)( 9,15)(10,20)(11,14)$ |
Group invariants
| Order: | $12100=2^{2} \cdot 5^{2} \cdot 11^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |