Show commands: Magma
Group invariants
| Abstract group: | $C_{11}^2:(C_5\times D_5)$ |
| |
| Order: | $6050=2 \cdot 5^{2} \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $21$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,16,10,17,4,20,8,18,9,12)(2,21)(3,15,5,14,11,22,7,13,6,19)$, $(2,10,5,4,6)(3,8,9,7,11)(13,17,15,16,21)(14,22,18,20,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $D_{5}$, $C_{10}$ $50$: $D_5\times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $55$ | $2$ | $11$ | $( 1,18)( 2,16)( 3,14)( 4,12)( 5,21)( 6,19)( 7,17)( 8,15)( 9,13)(10,22)(11,20)$ |
| 5A1 | $5^{2},1^{12}$ | $22$ | $5$ | $8$ | $( 1, 9,11, 6, 2)( 3, 4, 7, 5,10)$ |
| 5A-1 | $5^{2},1^{12}$ | $22$ | $5$ | $8$ | $( 1, 2, 6,11, 9)( 3,10, 5, 7, 4)$ |
| 5A2 | $5^{2},1^{12}$ | $22$ | $5$ | $8$ | $( 1,11, 2, 9, 6)( 3, 7,10, 4, 5)$ |
| 5A-2 | $5^{2},1^{12}$ | $22$ | $5$ | $8$ | $( 1, 6, 9, 2,11)( 3, 5, 4,10, 7)$ |
| 5B1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1,11, 8,10, 5)( 2, 3, 6, 4, 9)(12,14,20,16,15)(13,17,18,21,19)$ |
| 5B-1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 5,10, 8,11)( 2, 9, 4, 6, 3)(12,15,16,20,14)(13,19,21,18,17)$ |
| 5B2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 8, 5,11,10)( 2, 6, 9, 3, 4)(12,20,15,14,16)(13,18,19,17,21)$ |
| 5B-2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1,10,11, 5, 8)( 2, 4, 3, 9, 6)(12,16,14,15,20)(13,21,17,19,18)$ |
| 5C1 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 1, 8, 3, 5, 2)( 4, 9, 7,10,11)(12,20,22,17,13)(14,15,18,16,21)$ |
| 5C2 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 1, 3, 2, 8, 5)( 4, 7,11, 9,10)(12,22,13,20,17)(14,18,21,15,16)$ |
| 5D1 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 2, 5, 6,10, 4)( 3, 9,11, 8, 7)(12,14,13,19,16)(15,18,22,20,21)$ |
| 5D-1 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)(12,16,19,13,14)(15,21,20,22,18)$ |
| 5D2 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)(12,13,16,14,19)(15,22,21,18,20)$ |
| 5D-2 | $5^{4},1^{2}$ | $242$ | $5$ | $16$ | $( 2,10, 5, 4, 6)( 3, 8, 9, 7,11)(12,19,14,16,13)(15,20,18,21,22)$ |
| 10A1 | $10^{2},2$ | $605$ | $10$ | $19$ | $( 1,14,11,20, 8,16,10,15, 5,12)( 2,19, 3,13, 6,17, 4,18, 9,21)( 7,22)$ |
| 10A-1 | $10^{2},2$ | $605$ | $10$ | $19$ | $( 1,12, 5,15,10,16, 8,20,11,14)( 2,21, 9,18, 4,17, 6,13, 3,19)( 7,22)$ |
| 10A3 | $10^{2},2$ | $605$ | $10$ | $19$ | $( 1,20,10,12,11,16, 5,14, 8,15)( 2,13, 4,21, 3,17, 9,19, 6,18)( 7,22)$ |
| 10A-3 | $10^{2},2$ | $605$ | $10$ | $19$ | $( 1,15, 8,14, 5,16,11,12,10,20)( 2,18, 6,19, 9,17, 3,21, 4,13)( 7,22)$ |
| 11A1 | $11,1^{11}$ | $10$ | $11$ | $10$ | $(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11A-1 | $11,1^{11}$ | $10$ | $11$ | $10$ | $(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11B1 | $11^{2}$ | $25$ | $11$ | $20$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11B-1 | $11^{2}$ | $25$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11C | $11^{2}$ | $50$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 22A1 | $22$ | $275$ | $22$ | $21$ | $( 1,20,10,13, 8,17, 6,21, 4,14, 2,18,11,22, 9,15, 7,19, 5,12, 3,16)$ |
| 22A-1 | $22$ | $275$ | $22$ | $21$ | $( 1,16, 3,12, 5,19, 7,15, 9,22,11,18, 2,14, 4,21, 6,17, 8,13,10,20)$ |
| 55A1 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 9,11, 6, 2)( 3, 4, 7, 5,10)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 55A-1 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 2, 6,11, 9)( 3,10, 5, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 55A2 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1,11, 2, 9, 6)( 3, 7,10, 4, 5)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 55A-2 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 6, 9, 2,11)( 3, 5, 4,10, 7)(12,15,18,21,13,16,19,22,14,17,20)$ |
| 55A4 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 2, 6,11, 9)( 3,10, 5, 7, 4)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 55A-4 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 9,11, 6, 2)( 3, 4, 7, 5,10)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 55A8 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1, 6, 9, 2,11)( 3, 5, 4,10, 7)(12,22,21,20,19,18,17,16,15,14,13)$ |
| 55A-8 | $11,5^{2},1$ | $110$ | $55$ | $18$ | $( 1,11, 2, 9, 6)( 3, 7,10, 4, 5)(12,13,14,15,16,17,18,19,20,21,22)$ |
Malle's constant $a(G)$: $1/8$
Character table
35 x 35 character table
Regular extensions
Data not computed