Properties

Label 22T17
22T17 1 8 1->8 16 1->16 2 10 2->10 19 2->19 3 3->1 22 3->22 4 4->3 14 4->14 5 17 5->17 6 7 6->7 20 6->20 9 7->9 12 7->12 11 8->11 15 8->15 9->2 18 9->18 10->4 21 10->21 11->6 13 11->13 12->1 12->21 13->5 13->16 14->9 14->22 15->2 15->17 16->6 16->12 17->10 17->18 18->3 18->13 19->7 20->11 20->14 21->4 21->20 22->8 22->15
Degree $22$
Order $2420$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{11}^2:D_{10}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(22, 17);
 

Group invariants

Abstract group:  $C_{11}^2:D_{10}$
Copy content magma:IdentifyGroup(G);
 
Order:  $2420=2^{2} \cdot 5 \cdot 11^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $22$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $17$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,8,11,6,7,9,2,10,4,3)(12,21,20,14,22,15,17,18,13,16)$, $(1,16,6,20,11,13,5,17,10,21,4,14,9,18,3,22,8,15,2,19,7,12)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$10$:  $D_{5}$
$20$:  $D_{10}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 11: None

Low degree siblings

44T61

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{22}$ $1$ $1$ $0$ $()$
2A $2^{11}$ $55$ $2$ $11$ $( 1,12)( 2,19)( 3,15)( 4,22)( 5,18)( 6,14)( 7,21)( 8,17)( 9,13)(10,20)(11,16)$
2B $2^{11}$ $55$ $2$ $11$ $( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,21)( 7,22)( 8,12)( 9,13)(10,14)(11,15)$
2C $2^{10},1^{2}$ $121$ $2$ $10$ $( 1, 9)( 2, 8)( 3, 7)( 4, 6)(10,11)(12,21)(13,20)(14,19)(15,18)(16,17)$
5A1 $5^{4},1^{2}$ $242$ $5$ $16$ $( 1, 2,11, 4, 7)( 3, 9, 8,10, 6)(12,16,14,15,20)(13,21,17,19,18)$
5A2 $5^{4},1^{2}$ $242$ $5$ $16$ $( 1,11, 7, 2, 4)( 3, 8, 6, 9,10)(12,14,20,16,15)(13,17,18,21,19)$
10A1 $10^{2},1^{2}$ $242$ $10$ $18$ $( 1, 6, 2, 3,11, 9, 4, 8, 7,10)(12,18,16,13,14,21,15,17,20,19)$
10A3 $10^{2},1^{2}$ $242$ $10$ $18$ $( 1, 3, 4,10, 2, 9, 7, 6,11, 8)(12,13,15,19,16,21,20,18,14,17)$
11A1 $11^{2}$ $10$ $11$ $20$ $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,22,21,20,19,18,17,16,15,14,13)$
11A2 $11^{2}$ $10$ $11$ $20$ $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,21,19,17,15,13,22,20,18,16,14)$
11A3 $11^{2}$ $10$ $11$ $20$ $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,20,17,14,22,19,16,13,21,18,15)$
11A4 $11^{2}$ $10$ $11$ $20$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,19,15,22,18,14,21,17,13,20,16)$
11A5 $11^{2}$ $10$ $11$ $20$ $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,18,13,19,14,20,15,21,16,22,17)$
11B1 $11^{2}$ $10$ $11$ $20$ $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,21,19,17,15,13,22,20,18,16,14)$
11B2 $11^{2}$ $10$ $11$ $20$ $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,19,15,22,18,14,21,17,13,20,16)$
11B3 $11^{2}$ $10$ $11$ $20$ $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,17,22,16,21,15,20,14,19,13,18)$
11B4 $11^{2}$ $10$ $11$ $20$ $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,15,18,21,13,16,19,22,14,17,20)$
11B5 $11^{2}$ $10$ $11$ $20$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,13,14,15,16,17,18,19,20,21,22)$
11C $11,1^{11}$ $20$ $11$ $10$ $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)$
22A1 $22$ $110$ $22$ $21$ $( 1,17, 4,16, 7,15,10,14, 2,13, 5,12, 8,22,11,21, 3,20, 6,19, 9,18)$
22A3 $22$ $110$ $22$ $21$ $( 1,16,10,13, 8,21, 6,18, 4,15, 2,12,11,20, 9,17, 7,14, 5,22, 3,19)$
22A5 $22$ $110$ $22$ $21$ $( 1,15, 5,21, 9,16, 2,22, 6,17,10,12, 3,18, 7,13,11,19, 4,14, 8,20)$
22A7 $22$ $110$ $22$ $21$ $( 1,14,11,18,10,22, 9,15, 8,19, 7,12, 6,16, 5,20, 4,13, 3,17, 2,21)$
22A9 $22$ $110$ $22$ $21$ $( 1,13, 6,15,11,17, 5,19,10,21, 4,12, 9,14, 3,16, 8,18, 2,20, 7,22)$
22B1 $22$ $110$ $22$ $21$ $( 1,15,10,13, 8,22, 6,20, 4,18, 2,16,11,14, 9,12, 7,21, 5,19, 3,17)$
22B3 $22$ $110$ $22$ $21$ $( 1,13, 6,18,11,12, 5,17,10,22, 4,16, 9,21, 3,15, 8,20, 2,14, 7,19)$
22B5 $22$ $110$ $22$ $21$ $( 1,22, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9,19,10,20,11,21)$
22B7 $22$ $110$ $22$ $21$ $( 1,20, 9,17, 6,14, 3,22,11,19, 8,16, 5,13, 2,21,10,18, 7,15, 4,12)$
22B9 $22$ $110$ $22$ $21$ $( 1,18, 5,22, 9,15, 2,19, 6,12,10,16, 3,20, 7,13,11,17, 4,21, 8,14)$

Malle's constant $a(G)$:     $1/10$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 5A1 5A2 10A1 10A3 11A1 11A2 11A3 11A4 11A5 11B1 11B2 11B3 11B4 11B5 11C 22A1 22A3 22A5 22A7 22A9 22B1 22B3 22B5 22B7 22B9
Size 1 55 55 121 242 242 242 242 10 10 10 10 10 10 10 10 10 10 20 110 110 110 110 110 110 110 110 110 110
2 P 1A 1A 1A 1A 5A2 5A1 5A1 5A2 11A2 11A4 11A5 11A3 11A1 11B2 11B4 11B5 11B3 11B1 11C 11A1 11A3 11A5 11A4 11A2 11B1 11B3 11B5 11B4 11B2
5 P 1A 2A 2B 2C 1A 1A 2C 2C 11A5 11A1 11A4 11A2 11A3 11B5 11B1 11B4 11B2 11B3 11C 22A5 22A7 22A3 22A9 22A1 22B5 22B7 22B3 22B9 22B1
11 P 1A 2A 2B 2C 5A1 5A2 10A1 10A3 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 2B 2B 2B 2B 2B
Type
2420.bl.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2420.bl.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2420.bl.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2420.bl.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2420.bl.2a1 R 2 0 0 2 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
2420.bl.2a2 R 2 0 0 2 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
2420.bl.2b1 R 2 0 0 2 ζ52+ζ52 ζ51+ζ5 ζ51ζ5 ζ52ζ52 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
2420.bl.2b2 R 2 0 0 2 ζ51+ζ5 ζ52+ζ52 ζ52ζ52 ζ51ζ5 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
2420.bl.10a1 R 10 0 2 0 0 0 0 0 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 1 0 0 ζ111+ζ11 0 ζ113+ζ113 ζ114+ζ114 ζ112+ζ112 ζ115+ζ115 0 0
2420.bl.10a2 R 10 0 2 0 0 0 0 0 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 1 0 0 ζ115+ζ115 0 ζ114+ζ114 ζ112+ζ112 ζ111+ζ11 ζ113+ζ113 0 0
2420.bl.10a3 R 10 0 2 0 0 0 0 0 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 1 0 0 ζ112+ζ112 0 ζ115+ζ115 ζ113+ζ113 ζ114+ζ114 ζ111+ζ11 0 0
2420.bl.10a4 R 10 0 2 0 0 0 0 0 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 1 0 0 ζ113+ζ113 0 ζ112+ζ112 ζ111+ζ11 ζ115+ζ115 ζ114+ζ114 0 0
2420.bl.10a5 R 10 0 2 0 0 0 0 0 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 1 0 0 ζ114+ζ114 0 ζ111+ζ11 ζ115+ζ115 ζ113+ζ113 ζ112+ζ112 0 0
2420.bl.10b1 R 10 2 0 0 0 0 0 0 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 1 ζ113+ζ113 ζ111+ζ11 0 ζ112+ζ112 0 0 0 0 ζ115+ζ115 ζ114+ζ114
2420.bl.10b2 R 10 2 0 0 0 0 0 0 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+2ζ114+2+2ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 1 ζ111+ζ11 ζ114+ζ114 0 ζ113+ζ113 0 0 0 0 ζ112+ζ112 ζ115+ζ115
2420.bl.10b3 R 10 2 0 0 0 0 0 0 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ113+2ζ111+2+2ζ11+2ζ113 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+2ζ112+2+2ζ112+2ζ115 1 ζ112+ζ112 ζ113+ζ113 0 ζ115+ζ115 0 0 0 0 ζ114+ζ114 ζ111+ζ11
2420.bl.10b4 R 10 2 0 0 0 0 0 0 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 1 ζ114+ζ114 ζ115+ζ115 0 ζ111+ζ11 0 0 0 0 ζ113+ζ113 ζ112+ζ112
2420.bl.10b5 R 10 2 0 0 0 0 0 0 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 1 ζ115+ζ115 ζ112+ζ112 0 ζ114+ζ114 0 0 0 0 ζ111+ζ11 ζ113+ζ113
2420.bl.10c1 R 10 2 0 0 0 0 0 0 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 1 ζ113ζ113 ζ111ζ11 0 ζ112ζ112 0 0 0 0 ζ115ζ115 ζ114ζ114
2420.bl.10c2 R 10 2 0 0 0 0 0 0 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+2ζ114+2+2ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 1 ζ111ζ11 ζ114ζ114 0 ζ113ζ113 0 0 0 0 ζ112ζ112 ζ115ζ115
2420.bl.10c3 R 10 2 0 0 0 0 0 0 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ113+2ζ111+2+2ζ11+2ζ113 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+2ζ112+2+2ζ112+2ζ115 1 ζ112ζ112 ζ113ζ113 0 ζ115ζ115 0 0 0 0 ζ114ζ114 ζ111ζ11
2420.bl.10c4 R 10 2 0 0 0 0 0 0 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 1 ζ114ζ114 ζ115ζ115 0 ζ111ζ11 0 0 0 0 ζ113ζ113 ζ112ζ112
2420.bl.10c5 R 10 2 0 0 0 0 0 0 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 1 ζ115ζ115 ζ112ζ112 0 ζ114ζ114 0 0 0 0 ζ111ζ11 ζ113ζ113
2420.bl.10d1 R 10 0 2 0 0 0 0 0 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 1 0 0 ζ111ζ11 0 ζ113ζ113 ζ114ζ114 ζ112ζ112 ζ115ζ115 0 0
2420.bl.10d2 R 10 0 2 0 0 0 0 0 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 1 0 0 ζ115ζ115 0 ζ114ζ114 ζ112ζ112 ζ111ζ11 ζ113ζ113 0 0
2420.bl.10d3 R 10 0 2 0 0 0 0 0 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 1 0 0 ζ112ζ112 0 ζ115ζ115 ζ113ζ113 ζ114ζ114 ζ111ζ11 0 0
2420.bl.10d4 R 10 0 2 0 0 0 0 0 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 1 0 0 ζ113ζ113 0 ζ112ζ112 ζ111ζ11 ζ115ζ115 ζ114ζ114 0 0
2420.bl.10d5 R 10 0 2 0 0 0 0 0 ζ1152ζ1142ζ11322ζ1132ζ114ζ115 ζ115+ζ114ζ113+ζ1121+ζ112ζ113+ζ114ζ115 2ζ115+ζ114+2ζ113+2ζ113+ζ114+2ζ115 2ζ115+2ζ114+2+2ζ114+2ζ115 2ζ115+2ζ112+2+2ζ112+2ζ115 2ζ114+2ζ111+2+2ζ11+2ζ114 2ζ113+2ζ112+2+2ζ112+2ζ113 2ζ114+2ζ113+ζ112+ζ112+2ζ113+2ζ114 2ζ113+2ζ111+2+2ζ11+2ζ113 2ζ114ζ1132ζ11222ζ112ζ1132ζ114 1 0 0 ζ114ζ114 0 ζ111ζ11 ζ115ζ115 ζ113ζ113 ζ112ζ112 0 0
2420.bl.20a R 20 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 9 0 0 0 0 0 0 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed