Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $16$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,3,20)(2,18)(4,22,11,14)(5,13,10,12)(6,15,9,21)(7,17,8,19), (1,16,3,19)(2,12)(4,15,11,20)(5,22,10,13)(6,18,9,17)(7,14,8,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: 20T2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
44T60Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 11, 11 $ | $20$ | $11$ | $( 1, 6,11, 5,10, 4, 9, 3, 8, 2, 7)(12,14,16,18,20,22,13,15,17,19,21)$ |
| $ 11, 11 $ | $20$ | $11$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,16,20,13,17,21,14,18,22,15,19)$ |
| $ 11, 11 $ | $20$ | $11$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)(12,20,17,14,22,19,16,13,21,18,15)$ |
| $ 11, 11 $ | $20$ | $11$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,17,22,16,21,15,20,14,19,13,18)$ |
| $ 11, 11 $ | $20$ | $11$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,22,21,20,19,18,17,16,15,14,13)$ |
| $ 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $11$ | $(12,16,20,13,17,21,14,18,22,15,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $121$ | $2$ | $( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 6, 4, 5,10)( 3,11, 7, 9, 8)(13,21,16,15,17)(14,19,20,18,22)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 7, 4, 8,10,11, 6, 9, 5, 3)(13,14,16,20,17,22,21,19,15,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $242$ | $5$ | $( 2, 4,10, 6, 5)( 3, 7, 8,11, 9)(13,16,17,21,15)(14,20,22,19,18)$ |
| $ 10, 10, 1, 1 $ | $242$ | $10$ | $( 2, 9,10, 7, 5,11, 4, 3, 6, 8)(13,19,17,14,15,22,16,18,21,20)$ |
| $ 4, 4, 4, 4, 4, 2 $ | $605$ | $4$ | $( 1,16, 3,20)( 2,18)( 4,22,11,14)( 5,13,10,12)( 6,15, 9,21)( 7,17, 8,19)$ |
| $ 4, 4, 4, 4, 4, 2 $ | $605$ | $4$ | $( 1,19, 6,20)( 2,17, 5,22)( 3,15, 4,13)( 7,18,11,21)( 8,16,10,12)( 9,14)$ |
Group invariants
| Order: | $2420=2^{2} \cdot 5 \cdot 11^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: |
2 2 . . . . . . 2 1 1 1 1 2 2
5 1 . . . . . . 1 1 1 1 1 . .
11 2 2 2 2 2 2 2 . . . . . . .
1a 11a 11b 11c 11d 11e 11f 2a 5a 10a 5b 10b 4a 4b
2P 1a 11b 11c 11d 11e 11a 11f 1a 5b 5b 5a 5a 2a 2a
3P 1a 11d 11e 11a 11b 11c 11f 2a 5b 10b 5a 10a 4b 4a
5P 1a 11e 11a 11b 11c 11d 11f 2a 1a 2a 1a 2a 4a 4b
7P 1a 11c 11d 11e 11a 11b 11f 2a 5b 10b 5a 10a 4b 4a
11P 1a 1a 1a 1a 1a 1a 1a 2a 5a 10a 5b 10b 4b 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1
X.3 1 1 1 1 1 1 1 -1 1 -1 1 -1 G -G
X.4 1 1 1 1 1 1 1 -1 1 -1 1 -1 -G G
X.5 2 2 2 2 2 2 2 -2 F -F *F -*F . .
X.6 2 2 2 2 2 2 2 -2 *F -*F F -F . .
X.7 2 2 2 2 2 2 2 2 F F *F *F . .
X.8 2 2 2 2 2 2 2 2 *F *F F F . .
X.9 20 -2 -2 -2 -2 -2 9 . . . . . . .
X.10 20 A C E B D -2 . . . . . . .
X.11 20 B D A C E -2 . . . . . . .
X.12 20 C E B D A -2 . . . . . . .
X.13 20 D A C E B -2 . . . . . . .
X.14 20 E B D A C -2 . . . . . . .
A = 2*E(11)-2*E(11)^4-E(11)^5-E(11)^6-2*E(11)^7+2*E(11)^10
B = -2*E(11)+2*E(11)^3-E(11)^4-E(11)^7+2*E(11)^8-2*E(11)^10
C = -E(11)+2*E(11)^2-2*E(11)^3-2*E(11)^8+2*E(11)^9-E(11)^10
D = -2*E(11)^2-E(11)^3+2*E(11)^5+2*E(11)^6-E(11)^8-2*E(11)^9
E = -E(11)^2+2*E(11)^4-2*E(11)^5-2*E(11)^6+2*E(11)^7-E(11)^9
F = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
G = -E(4)
= -Sqrt(-1) = -i
|