Group action invariants
| Degree $n$ : | $22$ | |
| Transitive number $t$ : | $14$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14,8,18,2,16,5,21,3,15)(4,19,6,17,9,22,7,12,11,13)(10,20), (1,3,9)(2,4,10,11,7,5)(6,8)(12,14,15,19,13,20)(16,17,21)(18,22) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
12T218, 24T2949Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $110$ | $3$ | $( 1, 9,11)( 2, 6, 8)( 3, 4, 5)(12,22,20)(13,19,17)(14,16,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $55$ | $2$ | $( 1,10)( 2, 5)( 3,11)( 8, 9)(12,22)(13,18)(16,20)(17,21)$ |
| $ 6, 6, 3, 3, 2, 2 $ | $110$ | $6$ | $( 1, 9, 3,10, 8,11)( 2, 5)( 4, 7, 6)(12,21,18,22,17,13)(14,19,15)(16,20)$ |
| $ 4, 4, 4, 4, 2, 2, 2 $ | $110$ | $4$ | $( 1,20)( 2,13, 3,14)( 4,16, 6,19)( 5,15, 8,17)( 7,21,10,18)( 9,12)(11,22)$ |
| $ 12, 6, 4 $ | $110$ | $12$ | $( 1,12,11,20, 9,22)( 2,16, 5,13, 6,15, 3,19, 8,14, 4,17)( 7,18,10,21)$ |
| $ 12, 6, 4 $ | $110$ | $12$ | $( 1,12,11,20, 9,22)( 2,19, 5,14, 6,17, 3,16, 8,13, 4,15)( 7,21,10,18)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $132$ | $5$ | $( 2, 6, 4, 3, 9)( 5, 7,11,10, 8)(13,17,15,14,20)(16,18,22,21,19)$ |
| $ 5, 5, 5, 5, 1, 1 $ | $132$ | $5$ | $( 2, 3, 6, 9, 4)( 5,10, 7, 8,11)(13,14,17,20,15)(16,21,18,19,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $66$ | $2$ | $( 1,12)( 2,13)( 3,14)( 4,15)( 5,16)( 6,17)( 7,18)( 8,19)( 9,20)(10,21)(11,22)$ |
| $ 10, 10, 2 $ | $132$ | $10$ | $( 1,12)( 2,15, 9,17, 3,13, 4,20, 6,14)( 5,22, 8,18,10,16,11,19, 7,21)$ |
| $ 10, 10, 2 $ | $132$ | $10$ | $( 1,12)( 2,20, 3,15, 6,13, 9,14, 4,17)( 5,19,10,22, 7,16, 8,21,11,18)$ |
| $ 11, 11 $ | $120$ | $11$ | $( 1, 6, 3, 9,11, 2, 7,10, 4, 8, 5)(12,19,16,17,18,21,14,22,20,13,15)$ |
Group invariants
| Order: | $1320=2^{3} \cdot 3 \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [1320, 133] |
| Character table: |
2 3 3 2 2 2 2 2 1 1 . 2 1 1
3 1 1 1 1 1 1 1 . . . . . .
5 1 . . . . . . 1 1 . 1 1 1
11 1 . . . . . . . . 1 . . .
1a 2a 3a 4a 6a 12a 12b 5a 5b 11a 2b 10a 10b
2P 1a 1a 3a 2a 3a 6a 6a 5b 5a 11a 1a 5a 5b
3P 1a 2a 1a 4a 2a 4a 4a 5b 5a 11a 2b 10b 10a
5P 1a 2a 3a 4a 6a 12b 12a 1a 1a 11a 2b 2b 2b
7P 1a 2a 3a 4a 6a 12b 12a 5b 5a 11a 2b 10b 10a
11P 1a 2a 3a 4a 6a 12a 12b 5a 5b 1a 2b 10a 10b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1
X.3 10 -2 1 -2 1 1 1 . . -1 . . .
X.4 10 -2 1 2 1 -1 -1 . . -1 . . .
X.5 10 2 -2 . 2 . . . . -1 . . .
X.6 10 2 1 . -1 A -A . . -1 . . .
X.7 10 2 1 . -1 -A A . . -1 . . .
X.8 11 -1 -1 -1 -1 -1 -1 1 1 . 1 1 1
X.9 11 -1 -1 1 -1 1 1 1 1 . -1 -1 -1
X.10 12 . . . . . . B *B 1 -2 -*B -B
X.11 12 . . . . . . *B B 1 -2 -B -*B
X.12 12 . . . . . . B *B 1 2 *B B
X.13 12 . . . . . . *B B 1 2 B *B
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
B = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|