Show commands: Magma
Group invariants
| Abstract group: | $C_2\times \PSL(2,11)$ |
| |
| Order: | $1320=2^{3} \cdot 3 \cdot 5 \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $13$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,20,12,5,22,2,19,11,6,21)(3,17,13,8,16,4,18,14,7,15)(9,10)$, $(1,21,15,3,8,10)(2,22,16,4,7,9)(5,14,11,6,13,12)(17,20)(18,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $660$: $\PSL(2,11)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: $\PSL(2,11)$
Low degree siblings
22T13, 24T2948Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $1$ | $2$ | $11$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$ |
| 2B | $2^{11}$ | $55$ | $2$ | $11$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5, 9)( 6,10)(11,12)(15,20)(16,19)(17,18)(21,22)$ |
| 2C | $2^{8},1^{6}$ | $55$ | $2$ | $8$ | $( 1,22)( 2,21)( 3, 7)( 4, 8)( 5,11)( 6,12)( 9,15)(10,16)$ |
| 3A | $3^{6},1^{4}$ | $110$ | $3$ | $12$ | $( 1, 9,19)( 2,10,20)( 3, 7,11)( 4, 8,12)(13,21,16)(14,22,15)$ |
| 5A1 | $5^{4},1^{2}$ | $132$ | $5$ | $16$ | $( 1, 6,15, 4, 9)( 2, 5,16, 3,10)(11,21,13,20,18)(12,22,14,19,17)$ |
| 5A2 | $5^{4},1^{2}$ | $132$ | $5$ | $16$ | $( 1,15, 9, 6, 4)( 2,16,10, 5, 3)(11,13,18,21,20)(12,14,17,22,19)$ |
| 6A | $6^{3},2^{2}$ | $110$ | $6$ | $17$ | $( 1,20, 9, 2,19,10)( 3,12, 7, 4,11, 8)( 5, 6)(13,15,21,14,16,22)(17,18)$ |
| 6B | $6^{3},2^{2}$ | $110$ | $6$ | $17$ | $( 1,13,15, 7, 4,20)( 2,14,16, 8, 3,19)( 5, 9)( 6,10)(11,17,21,12,18,22)$ |
| 6C | $6^{2},3^{2},2^{2}$ | $110$ | $6$ | $16$ | $( 1,12, 4,22, 6, 8)( 2,11, 3,21, 5, 7)( 9,15)(10,16)(13,20,18)(14,19,17)$ |
| 10A1 | $10^{2},2$ | $132$ | $10$ | $19$ | $( 1, 3, 6,10,15, 2, 4, 5, 9,16)( 7, 8)(11,19,21,17,13,12,20,22,18,14)$ |
| 10A3 | $10^{2},2$ | $132$ | $10$ | $19$ | $( 1,10, 4,16, 6, 2, 9, 3,15, 5)( 7, 8)(11,17,20,14,21,12,18,19,13,22)$ |
| 11A1 | $11^{2}$ | $60$ | $11$ | $20$ | $( 1,15, 4,19, 9,14,17, 6,12,22, 8)( 2,16, 3,20,10,13,18, 5,11,21, 7)$ |
| 11A-1 | $11^{2}$ | $60$ | $11$ | $20$ | $( 1, 8,22,12, 6,17,14, 9,19, 4,15)( 2, 7,21,11, 5,18,13,10,20, 3,16)$ |
| 22A1 | $22$ | $60$ | $22$ | $21$ | $( 1,18,15, 5, 4,11,19,21, 9, 7,14, 2,17,16, 6, 3,12,20,22,10, 8,13)$ |
| 22A-1 | $22$ | $60$ | $22$ | $21$ | $( 1,13, 8,10,22,20,12, 3, 6,16,17, 2,14, 7, 9,21,19,11, 4, 5,15,18)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 6B | 6C | 10A1 | 10A3 | 11A1 | 11A-1 | 22A1 | 22A-1 | ||
| Size | 1 | 1 | 55 | 55 | 110 | 132 | 132 | 110 | 110 | 110 | 132 | 132 | 60 | 60 | 60 | 60 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 3A | 3A | 5A1 | 5A2 | 11A-1 | 11A1 | 11A1 | 11A-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 2B | 2C | 10A3 | 10A1 | 11A1 | 11A-1 | 22A1 | 22A-1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 6B | 6C | 2A | 2A | 11A1 | 11A-1 | 22A1 | 22A-1 | |
| 11 P | 1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 6B | 6C | 10A1 | 10A3 | 1A | 1A | 2A | 2A | |
| Type | |||||||||||||||||
| 1320.134.1a | R | ||||||||||||||||
| 1320.134.1b | R | ||||||||||||||||
| 1320.134.5a1 | C | ||||||||||||||||
| 1320.134.5a2 | C | ||||||||||||||||
| 1320.134.5b1 | C | ||||||||||||||||
| 1320.134.5b2 | C | ||||||||||||||||
| 1320.134.10a | R | ||||||||||||||||
| 1320.134.10b | R | ||||||||||||||||
| 1320.134.10c | R | ||||||||||||||||
| 1320.134.10d | R | ||||||||||||||||
| 1320.134.11a | R | ||||||||||||||||
| 1320.134.11b | R | ||||||||||||||||
| 1320.134.12a1 | R | ||||||||||||||||
| 1320.134.12a2 | R | ||||||||||||||||
| 1320.134.12b1 | R | ||||||||||||||||
| 1320.134.12b2 | R |
Regular extensions
Data not computed