Show commands: Magma
Group invariants
| Abstract group: | $C_{11}:F_{11}$ |
| |
| Order: | $1210=2 \cdot 5 \cdot 11^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $11$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,18,10,14,11,16,5,15,8,21)(2,20,4,13,3,22,9,12,6,17)(7,19)$, $(1,18,8,12,5,13,11,22,10,15)(2,14,6,20,9,19,3,21,4,17)(7,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $C_{10}$ $55$: $C_{11}:C_5$ $110$: $F_{11}$, 22T5 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 11: None
Low degree siblings
22T11 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{22}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{11}$ | $11$ | $2$ | $11$ | $( 1,14)( 2,20)( 3,15)( 4,21)( 5,16)( 6,22)( 7,17)( 8,12)( 9,18)(10,13)(11,19)$ |
| 5A1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 6, 4, 7, 8)( 2,10, 9, 5,11)(12,14,22,21,17)(13,18,16,19,20)$ |
| 5A-1 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 8, 7, 4, 6)( 2,11, 5, 9,10)(12,17,21,22,14)(13,20,19,16,18)$ |
| 5A2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 4, 8, 6, 7)( 2, 9,11,10, 5)(12,22,17,14,21)(13,16,20,18,19)$ |
| 5A-2 | $5^{4},1^{2}$ | $121$ | $5$ | $16$ | $( 1, 7, 6, 8, 4)( 2, 5,10,11, 9)(12,21,14,17,22)(13,19,18,20,16)$ |
| 10A1 | $10^{2},2$ | $121$ | $10$ | $19$ | $( 1,17, 6,12, 4,14, 7,22, 8,21)( 2,16,10,19, 9,20, 5,13,11,18)( 3,15)$ |
| 10A-1 | $10^{2},2$ | $121$ | $10$ | $19$ | $( 1,21, 8,22, 7,14, 4,12, 6,17)( 2,18,11,13, 5,20, 9,19,10,16)( 3,15)$ |
| 10A3 | $10^{2},2$ | $121$ | $10$ | $19$ | $( 1,12, 7,21, 6,14, 8,17, 4,22)( 2,19, 5,18,10,20,11,16, 9,13)( 3,15)$ |
| 10A-3 | $10^{2},2$ | $121$ | $10$ | $19$ | $( 1,22, 4,17, 8,14, 6,21, 7,12)( 2,13, 9,16,11,20,10,18, 5,19)( 3,15)$ |
| 11A1 | $11^{2}$ | $5$ | $11$ | $20$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(12,17,22,16,21,15,20,14,19,13,18)$ |
| 11A-1 | $11^{2}$ | $5$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,18,13,19,14,20,15,21,16,22,17)$ |
| 11B | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 9, 6, 3,11, 8, 5, 2,10, 7, 4)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11C1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 3, 5, 7, 9,11, 2, 4, 6, 8,10)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11C-1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 5, 9, 2, 6,10, 3, 7,11, 4, 8)(12,20,17,14,22,19,16,13,21,18,15)$ |
| 11D1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,13,14,15,16,17,18,19,20,21,22)$ |
| 11D-1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 4, 7,10, 2, 5, 8,11, 3, 6, 9)(12,14,16,18,20,22,13,15,17,19,21)$ |
| 11E1 | $11,1^{11}$ | $10$ | $11$ | $10$ | $( 1,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
| 11E-1 | $11,1^{11}$ | $10$ | $11$ | $10$ | $( 1,10, 8, 6, 4, 2,11, 9, 7, 5, 3)$ |
| 11F1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,21,19,17,15,13,22,20,18,16,14)$ |
| 11F-1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)(12,16,20,13,17,21,14,18,22,15,19)$ |
| 11G1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 8, 4,11, 7, 3,10, 6, 2, 9, 5)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 11G-1 | $11^{2}$ | $10$ | $11$ | $20$ | $( 1, 7, 2, 8, 3, 9, 4,10, 5,11, 6)(12,19,15,22,18,14,21,17,13,20,16)$ |
| 22A1 | $22$ | $55$ | $22$ | $21$ | $( 1,14,11,19,10,13, 9,18, 8,12, 7,17, 6,22, 5,16, 4,21, 3,15, 2,20)$ |
| 22A-1 | $22$ | $55$ | $22$ | $21$ | $( 1,20, 2,15, 3,21, 4,16, 5,22, 6,17, 7,12, 8,18, 9,13,10,19,11,14)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 11A1 | 11A-1 | 11B | 11C1 | 11C-1 | 11D1 | 11D-1 | 11E1 | 11E-1 | 11F1 | 11F-1 | 11G1 | 11G-1 | 22A1 | 22A-1 | ||
| Size | 1 | 11 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 121 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 55 | 55 | |
| 2 P | 1A | 1A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 11A-1 | 11A1 | 11B | 11C-1 | 11C1 | 11D-1 | 11D1 | 11E-1 | 11E1 | 11F-1 | 11F1 | 11G-1 | 11G1 | 11A1 | 11A-1 | |
| 5 P | 1A | 2A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 11A1 | 11A-1 | 11B | 11C1 | 11C-1 | 11D1 | 11D-1 | 11E1 | 11E-1 | 11F1 | 11F-1 | 11G1 | 11G-1 | 22A1 | 22A-1 | |
| 11 P | 1A | 2A | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | |
| Type | ||||||||||||||||||||||||||
| 1210.12.1a | R | |||||||||||||||||||||||||
| 1210.12.1b | R | |||||||||||||||||||||||||
| 1210.12.1c1 | C | |||||||||||||||||||||||||
| 1210.12.1c2 | C | |||||||||||||||||||||||||
| 1210.12.1c3 | C | |||||||||||||||||||||||||
| 1210.12.1c4 | C | |||||||||||||||||||||||||
| 1210.12.1d1 | C | |||||||||||||||||||||||||
| 1210.12.1d2 | C | |||||||||||||||||||||||||
| 1210.12.1d3 | C | |||||||||||||||||||||||||
| 1210.12.1d4 | C | |||||||||||||||||||||||||
| 1210.12.5a1 | C | |||||||||||||||||||||||||
| 1210.12.5a2 | C | |||||||||||||||||||||||||
| 1210.12.5b1 | C | |||||||||||||||||||||||||
| 1210.12.5b2 | C | |||||||||||||||||||||||||
| 1210.12.10a | R | |||||||||||||||||||||||||
| 1210.12.10b1 | C | |||||||||||||||||||||||||
| 1210.12.10b2 | C | |||||||||||||||||||||||||
| 1210.12.10c1 | C | |||||||||||||||||||||||||
| 1210.12.10c2 | C | |||||||||||||||||||||||||
| 1210.12.10d1 | C | |||||||||||||||||||||||||
| 1210.12.10d2 | C | |||||||||||||||||||||||||
| 1210.12.10e1 | C | |||||||||||||||||||||||||
| 1210.12.10e2 | C | |||||||||||||||||||||||||
| 1210.12.10f1 | C | |||||||||||||||||||||||||
| 1210.12.10f2 | C |
Regular extensions
Data not computed