Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $98$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,5)(2,11,4)(3,12,6)(7,14,17)(8,13,18)(9,15,16)(19,20,21), (1,20,11,6,7,16,2,19,12,5,8,17,3,21,10,4,9,18) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ x 4 6: $C_6$ x 4 9: $C_3^2$ 18: $C_6 \times C_3$ 42: $F_7$ 126: 21T9 30618: 21T77 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: $F_7$
Low degree siblings
21T98 x 5, 42T1211 x 6, 42T1223 x 3, 42T1225 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 168 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $91854=2 \cdot 3^{8} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |