Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $85$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,2,16,20,18,19,12)(3,10,8,9,11,14,4,21)(5,13,6,15), (1,12,16,15,18,2,21)(3,5,6,9,7,4,13)(8,20,11,14,19,10,17) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
21T85, 42T930 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $120$ | $2$ | $( 2,19)( 3,11)( 5, 6)( 7,16)( 9,14)(10,21)(12,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $2240$ | $3$ | $( 1, 8,15)( 2, 5, 9)( 3,21,18)( 4,17,13)( 6,14,19)(10,12,11)$ |
| $ 6, 6, 3, 3, 2, 1 $ | $6720$ | $6$ | $( 1,15, 8)( 2,14, 5,19, 9, 6)( 3,12,21,11,18,10)( 4,13,17)( 7,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $315$ | $2$ | $( 3,18)( 4, 7)( 5,17)( 8, 9)(11,21)(13,15)(14,16)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $2520$ | $4$ | $( 1,10)( 2,12)( 3,15,18,13)( 4,16, 7,14)( 5, 8,17, 9)(11,19,21,20)$ |
| $ 4, 4, 4, 4, 2, 1, 1, 1 $ | $2520$ | $4$ | $( 3, 5,11,19)( 4,14, 9,13)( 7,16, 8,15)(10,12)(17,21,20,18)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $1260$ | $4$ | $( 2, 6)( 3,19,11, 5)( 4, 7, 9, 8)(10,12)(13,15,14,16)(17,21,20,18)$ |
| $ 8, 8, 4, 1 $ | $5040$ | $8$ | $( 1,10, 2,12)( 3,14,11,17,18,16,21, 5)( 4,15, 8,20, 7,13, 9,19)$ |
| $ 7, 7, 7 $ | $2880$ | $7$ | $( 1, 6,11, 3,18, 2,21)( 4,17, 9,13,15,19,12)( 5,10, 7,20, 8,16,14)$ |
| $ 7, 7, 7 $ | $2880$ | $7$ | $( 1,21, 2,18, 3,11, 6)( 4,12,19,15,13, 9,17)( 5,14,16, 8,20, 7,10)$ |
| $ 14, 7 $ | $2880$ | $14$ | $( 1,11,18,21, 6, 3, 2)( 4, 8,15,10,17,16,19, 7, 9,14,12,20,13, 5)$ |
| $ 14, 7 $ | $2880$ | $14$ | $( 1,21, 2,18, 3,11, 6)( 4,10,19,14,13, 8,17, 7,12, 5,15,16, 9,20)$ |
| $ 5, 5, 5, 5, 1 $ | $8064$ | $5$ | $( 1, 4,14,13, 9)( 2, 8, 5,15,10)( 3,21,20, 7,16)( 6,19,12,17,11)$ |
Group invariants
| Order: | $40320=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 7 7 4 4 4 1 1 5 1 1 1 1 . 3
3 2 . . . 1 2 1 . . . . . . .
5 1 . . . . . . . . . . . 1 .
7 1 . . . 1 . . . 1 1 1 1 . .
1a 2a 4a 4b 2b 3a 6a 4c 7a 7b 14a 14b 5a 8a
2P 1a 1a 2a 2a 1a 3a 3a 2a 7a 7b 7a 7b 5a 4c
3P 1a 2a 4a 4b 2b 1a 2b 4c 7b 7a 14b 14a 5a 8a
5P 1a 2a 4a 4b 2b 3a 6a 4c 7b 7a 14b 14a 1a 8a
7P 1a 2a 4a 4b 2b 3a 6a 4c 1a 1a 2b 2b 5a 8a
11P 1a 2a 4a 4b 2b 3a 6a 4c 7a 7b 14a 14b 5a 8a
13P 1a 2a 4a 4b 2b 3a 6a 4c 7b 7a 14b 14a 5a 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 -1
X.3 20 4 . -2 -6 2 . . -1 -1 1 1 . .
X.4 20 4 . 2 6 2 . . -1 -1 -1 -1 . .
X.5 35 3 -1 1 -7 -1 -1 3 . . . . . 1
X.6 35 3 -1 -1 7 -1 1 3 . . . . . -1
X.7 45 -3 1 -1 3 . . 1 A /A A /A . 1
X.8 45 -3 1 -1 3 . . 1 /A A /A A . 1
X.9 45 -3 1 1 -3 . . 1 A /A -A -/A . -1
X.10 45 -3 1 1 -3 . . 1 /A A -/A -A . -1
X.11 64 . . . 8 1 -1 . 1 1 1 1 -1 .
X.12 64 . . . -8 1 1 . 1 1 -1 -1 -1 .
X.13 70 6 2 . . -2 . -2 . . . . . .
X.14 126 -2 -2 . . . . -2 . . . . 1 .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|