Properties

Label 21T76
Order \(30618\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $76$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18)(2,16)(3,17)(4,14,5,15,6,13)(7,11,9,10,8,12)(19,20,21), (1,6,7,10,13,16,19,2,5,9,12,15,17,20,3,4,8,11,14,18,21)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
14:  $D_{7}$
42:  21T3
10206:  21T51

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $D_{7}$

Low degree siblings

21T76 x 25, 42T853 x 26, 42T862 x 26, 42T864 x 13

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 288 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $30618=2 \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.