Properties

Label 21T75
Order \(30618\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $75$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,19,9,18,4,13,2,12,20,8,16,6,15,3,11,21,7,17,5,14), (2,3)(4,19)(5,20)(6,21)(7,17)(8,18)(9,16)(10,13,12,14,11,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$
14:  $D_{7}$
42:  $D_{21}$
10206:  21T51

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $D_{7}$

Low degree siblings

21T75 x 25, 42T852 x 26, 42T861 x 13, 42T863 x 26

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 207 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $30618=2 \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.