Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $67$ | |
| Group : | $\PSL(3,4)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15), (2,14,18,20,8)(3,7,12,13,19)(4,21,17,15,10)(5,11,16,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
21T67Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 1 $ | $4032$ | $5$ | $( 1,13,14, 4, 9)( 2,15,12,17,11)( 3,18,21,20,16)( 5, 8,19,10, 6)$ |
| $ 5, 5, 5, 5, 1 $ | $4032$ | $5$ | $( 1, 4,13, 9,14)( 2,17,15,11,12)( 3,20,18,16,21)( 5,10, 8, 6,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $315$ | $2$ | $( 1,14)( 3, 6)( 4,13)( 8,18)(10,15)(11,19)(12,21)(16,17)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $1260$ | $4$ | $( 1,17,14,16)( 2, 5)( 3,10, 6,15)( 4,12,13,21)( 7,20)( 8,11,18,19)$ |
| $ 7, 7, 7 $ | $2880$ | $7$ | $( 1,21, 8,19,13, 4, 7)( 2,12, 9, 6,16,18,20)( 3,14,11,15, 5,10,17)$ |
| $ 7, 7, 7 $ | $2880$ | $7$ | $( 1, 7, 4,13,19, 8,21)( 2,20,18,16, 6, 9,12)( 3,17,10, 5,15,11,14)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $2240$ | $3$ | $( 1,21, 5)( 2, 4, 8)( 3,16,15)( 6,11,12)( 7,14,10)( 9,13,20)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $1260$ | $4$ | $( 1,13)( 2,11, 3,12)( 4, 9)( 5,21, 8,15)( 6,18,20, 7)(10,16,17,19)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $1260$ | $4$ | $( 1,15, 4,11)( 2, 5)( 3,16,18,21)( 6,17, 8,12)( 7,20)(10,13,19,14)$ |
Group invariants
| Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 6 4 4 4 . . . . .
3 2 . . . . . . . . 2
5 1 . . . . 1 1 . . .
7 1 . . . . . . 1 1 .
1a 2a 4a 4b 4c 5a 5b 7a 7b 3a
2P 1a 1a 2a 2a 2a 5b 5a 7a 7b 3a
3P 1a 2a 4a 4b 4c 5b 5a 7b 7a 1a
5P 1a 2a 4a 4b 4c 1a 1a 7b 7a 3a
7P 1a 2a 4a 4b 4c 5b 5a 1a 1a 3a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 20 4 . . . . . -1 -1 2
X.3 35 3 3 -1 -1 . . . . -1
X.4 35 3 -1 -1 3 . . . . -1
X.5 35 3 -1 3 -1 . . . . -1
X.6 45 -3 1 1 1 . . B /B .
X.7 45 -3 1 1 1 . . /B B .
X.8 63 -1 -1 -1 -1 A *A . . .
X.9 63 -1 -1 -1 -1 *A A . . .
X.10 64 . . . . -1 -1 1 1 1
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
B = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|