Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $57$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3)(4,17,12,19,8,6,16,11,21,7,5,18,10,20,9)(13,14,15), (1,4)(2,6)(3,5)(7,10,19,13)(8,12,20,15)(9,11,21,14)(17,18) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 2520: $A_7$ 5040: $A_7\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: $A_7$
Low degree siblings
42T667, 45T581 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)$ |
| $ 6, 6, 3, 3, 3 $ | $210$ | $6$ | $( 1, 5, 3, 4, 2, 6)( 7,11, 9,10, 8,12)(13,14,15)(16,17,18)(19,20,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $315$ | $2$ | $( 1, 4)( 2, 6)( 3, 5)( 7,10)( 8,12)( 9,11)(14,15)(17,18)(20,21)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $140$ | $3$ | $( 1, 5, 9)( 2, 6, 7)( 3, 4, 8)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
| $ 6, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $210$ | $6$ | $( 1, 4, 7)( 2, 6, 8, 3, 5, 9)(11,12)(14,15)(17,18)(20,21)$ |
| $ 3, 3, 3, 2, 2, 2, 2, 2, 2 $ | $210$ | $6$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,13)(11,14)(12,15)(16,19)(17,20)(18,21)$ |
| $ 6, 6, 3, 3, 3 $ | $420$ | $6$ | $( 1, 5, 9)( 2, 6, 7)( 3, 4, 8)(10,14,12,13,11,15)(16,20,18,19,17,21)$ |
| $ 6, 3, 2, 2, 2, 2, 2, 2 $ | $630$ | $6$ | $( 1, 4, 7)( 2, 6, 8, 3, 5, 9)(10,13)(11,15)(12,14)(16,19)(17,21)(18,20)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $280$ | $3$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,13,16)(11,14,17)(12,15,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $560$ | $3$ | $( 1, 5, 9)( 2, 6, 7)( 3, 4, 8)(10,14,18)(11,15,16)(12,13,17)(19,20,21)$ |
| $ 6, 6, 3, 3, 2, 1 $ | $840$ | $6$ | $( 1, 4, 7)( 2, 6, 8, 3, 5, 9)(10,13,16)(11,15,17,12,14,18)(20,21)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1, 1 $ | $630$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)(13,16)(14,17)(15,18)$ |
| $ 12, 6, 3 $ | $1260$ | $12$ | $( 1, 5, 9,10, 2, 6, 7,11, 3, 4, 8,12)(13,17,15,16,14,18)(19,20,21)$ |
| $ 4, 4, 4, 2, 2, 2, 2, 1 $ | $1890$ | $4$ | $( 1, 4, 7,10)( 2, 6, 8,12)( 3, 5, 9,11)(13,16)(14,18)(15,17)(20,21)$ |
| $ 5, 5, 5, 1, 1, 1, 1, 1, 1 $ | $504$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15, 3, 3 $ | $1008$ | $15$ | $( 1, 5, 9,10,14, 3, 4, 8,12,13, 2, 6, 7,11,15)(16,17,18)(19,20,21)$ |
| $ 10, 5, 2, 2, 1, 1 $ | $1512$ | $10$ | $( 1, 4, 7,10,13)( 2, 6, 8,12,14, 3, 5, 9,11,15)(17,18)(20,21)$ |
| $ 7, 7, 7 $ | $360$ | $7$ | $( 1, 4, 7,10,13,16,19)( 2, 5, 8,11,14,17,20)( 3, 6, 9,12,15,18,21)$ |
| $ 21 $ | $720$ | $21$ | $( 1, 5, 9,10,14,18,19, 2, 6, 7,11,15,16,20, 3, 4, 8,12,13,17,21)$ |
| $ 14, 7 $ | $1080$ | $14$ | $( 1, 4, 7,10,13,16,19)( 2, 6, 8,12,14,18,20, 3, 5, 9,11,15,17,21)$ |
| $ 7, 7, 7 $ | $360$ | $7$ | $( 1, 4, 7,10,13,19,16)( 2, 5, 8,11,14,20,17)( 3, 6, 9,12,15,21,18)$ |
| $ 21 $ | $720$ | $21$ | $( 1, 5, 9,10,14,21,16, 2, 6, 7,11,15,19,17, 3, 4, 8,12,13,20,18)$ |
| $ 14, 7 $ | $1080$ | $14$ | $( 1, 4, 7,10,13,19,16)( 2, 6, 8,12,14,21,17, 3, 5, 9,11,15,20,18)$ |
Group invariants
| Order: | $15120=2^{4} \cdot 3^{3} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |