Properties

Label 21T46
Degree $21$
Order $8232$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Related objects

Learn more about

Group action invariants

Degree $n$:  $21$
Transitive number $t$:  $46$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,8,20,7,11,18,6,14,16,5,10,21,4,13,19,3,9,17,2,12,15), (1,5)(2,4)(6,7)(8,16,9,19)(10,15,14,20)(11,18,13,17)(12,21)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$6$:  $S_3$
$24$:  $S_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 7: None

Low degree siblings

28T347, 42T538, 42T539, 42T540, 42T548

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 70 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $8232=2^{3} \cdot 3 \cdot 7^{3}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.