Label 21T45
Degree $21$
Order $8232$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Related objects

Learn more about

Group action invariants

Degree $n$:  $21$
Transitive number $t$:  $45$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,17,9,6,20,11)(2,19,8,5,18,12)(3,21,14,4,16,13)(7,15,10), (1,5,2,6,3,7,4)(8,13,11,9,14,12,10)(15,19)(16,18)(20,21)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$
$12$:  $A_4$
$24$:  $A_4\times C_2$

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 7: None

Low degree siblings

28T349, 28T350 x 2, 42T533, 42T534, 42T535 x 2, 42T536 x 2, 42T537, 42T545 x 2, 42T546

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $8232=2^{3} \cdot 3 \cdot 7^{3}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.