Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $38$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15), (2,3)(4,5,6)(7,8)(9,10,11)(13,17,15,16,14,18)(19,21,20) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
7T7, 14T46, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1,10)( 2,19)( 3,17)( 4,14)( 6,21)( 7, 9)(12,16)(15,20)$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1, 6, 3)( 7,15,12)( 8,11,18)( 9,20,16)(10,21,17)$ |
| $ 4, 4, 4, 4, 2, 1, 1, 1 $ | $210$ | $4$ | $( 1, 9,10, 7)( 2, 4,19,14)( 3,16,17,12)( 5,13)( 6,20,21,15)$ |
| $ 6, 6, 3, 2, 2, 1, 1 $ | $210$ | $6$ | $( 1,17, 6,10, 3,21)( 2,19)( 4,14)( 7,16,15, 9,12,20)( 8,18,11)$ |
| $ 12, 4, 3, 2 $ | $420$ | $12$ | $( 1,15,17, 9, 6,12,10,20, 3, 7,21,16)( 2,14,19, 4)( 5,13)( 8,11,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $105$ | $2$ | $( 1,13)( 2, 9)( 3,16)( 5,20)( 6,19)( 8,12)(10,15)(11,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $280$ | $3$ | $( 1,11, 6)( 2,10,20)( 3, 8,18)( 4, 7,21)( 5, 9,15)(12,17,16)(13,14,19)$ |
| $ 6, 6, 6, 3 $ | $840$ | $6$ | $( 1,19,11,13, 6,14)( 2, 5,10, 9,20,15)( 3,17, 8,16,18,12)( 4,21, 7)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 1, 5)( 7,14)( 8,17)( 9,19)(11,21)$ |
| $ 5, 5, 5, 5, 1 $ | $504$ | $5$ | $( 1, 7,11, 9, 8)( 2,15,20,16, 3)( 4,12, 6,13,18)( 5,14,21,19,17)$ |
| $ 10, 5, 5, 1 $ | $504$ | $10$ | $( 1,19, 7,17,11, 5, 9,14, 8,21)( 2,16,15, 3,20)( 4,13,12,18, 6)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $630$ | $4$ | $( 1, 7, 8,10)( 2,12,17, 5)( 3,14)( 4,15,16,21)( 6,13,18,19)( 9,11)$ |
| $ 7, 7, 7 $ | $720$ | $7$ | $( 1,14,20, 8, 2,21,16)( 3, 5,19, 9, 7,15,18)( 4,10,13,11,12, 6,17)$ |
| $ 6, 3, 3, 3, 2, 2, 1, 1 $ | $420$ | $6$ | $( 1,20, 3, 9, 6,16)( 2,13)( 5,19)( 7,15,12)( 8,11,18)(10,21,17)$ |
Group invariants
| Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 4 3 3 3 1 4 1 4 1 1 . 3 2 2
3 2 1 . 1 2 2 1 1 1 . . . 1 1 1
5 1 . . . . . . . 1 1 1 . . . .
7 1 . . . . . . . . . . 1 . . .
1a 2a 4a 4b 3a 3b 2b 6a 2c 5a 10a 7a 6b 12a 6c
2P 1a 1a 2a 2a 3a 3b 1a 3b 1a 5a 5a 7a 3a 6b 3a
3P 1a 2a 4a 4b 1a 1a 2b 2b 2c 5a 10a 7a 2a 4b 2c
5P 1a 2a 4a 4b 3a 3b 2b 6a 2c 1a 2c 7a 6b 12a 6c
7P 1a 2a 4a 4b 3a 3b 2b 6a 2c 5a 10a 1a 6b 12a 6c
11P 1a 2a 4a 4b 3a 3b 2b 6a 2c 5a 10a 7a 6b 12a 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 -1
X.3 6 2 . 2 3 . . . 4 1 -1 -1 -1 -1 1
X.4 6 2 . -2 3 . . . -4 1 1 -1 -1 1 -1
X.5 14 2 . -2 -1 2 . . 4 -1 -1 . -1 1 1
X.6 14 2 . . 2 -1 -2 1 -6 -1 -1 . 2 . .
X.7 14 2 . 2 -1 2 . . -4 -1 1 . -1 -1 -1
X.8 14 2 . . 2 -1 2 -1 6 -1 1 . 2 . .
X.9 15 -1 -1 -1 3 . 3 . -5 . . 1 -1 -1 1
X.10 15 -1 -1 1 3 . -3 . 5 . . 1 -1 1 -1
X.11 20 -4 . . 2 2 . . . . . -1 2 . .
X.12 21 1 -1 -1 -3 . -3 . 1 1 1 . 1 -1 1
X.13 21 1 -1 1 -3 . 3 . -1 1 -1 . 1 1 -1
X.14 35 -1 1 1 -1 -1 -1 -1 -5 . . . -1 1 1
X.15 35 -1 1 -1 -1 -1 1 1 5 . . . -1 -1 -1
|