Show commands: Magma
Group invariants
Abstract group: | $S_7$ |
| |
Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $21$ |
| |
Transitive number $t$: | $38$ |
| |
Parity: | $-1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15)$, $(2,3)(4,5,6)(7,8)(9,10,11)(13,17,15,16,14,18)(19,21,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
7T7, 14T46, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{5},1^{11}$ | $21$ | $2$ | $5$ | $( 2, 4)( 7, 9)(12,16)(14,19)(15,20)$ |
2B | $2^{8},1^{5}$ | $105$ | $2$ | $8$ | $( 2, 5)( 3, 6)( 7,10)( 8,11)(12,21)(13,19)(15,17)(16,20)$ |
2C | $2^{9},1^{3}$ | $105$ | $2$ | $9$ | $( 1,16)( 2,13)( 3, 9)( 5,20)( 6,19)( 7,12)(10,18)(11,17)(14,15)$ |
3A | $3^{5},1^{6}$ | $70$ | $3$ | $10$ | $( 1, 9, 4)( 2, 7,13)( 3, 8,16)( 5,10,19)( 6,11,20)$ |
3B | $3^{7}$ | $280$ | $3$ | $14$ | $( 1,11, 6)( 2, 7,15)( 3,10,20)( 4, 8,21)( 5, 9,18)(12,14,13)(16,17,19)$ |
4A | $4^{4},2,1^{3}$ | $210$ | $4$ | $13$ | $( 2, 3, 5, 6)( 7, 8,10,11)(12,17,21,15)(13,16,19,20)(14,18)$ |
4B | $4^{4},2^{2},1$ | $630$ | $4$ | $14$ | $( 1,18, 9,21)( 2,12,13,14)( 3,16,19, 5)( 4,17)( 6, 8,20,10)( 7,15)$ |
5A | $5^{4},1$ | $504$ | $5$ | $16$ | $( 1,17, 6,10,18)( 2,14,15, 7,12)( 3, 5,21,11, 8)( 4,19,20, 9,16)$ |
6A | $6^{2},3,2^{2},1^{2}$ | $210$ | $6$ | $14$ | $( 1, 4, 9)( 2,19, 7, 5,13,10)( 3,20, 8, 6,16,11)(12,21)(15,17)$ |
6B | $6,3^{3},2^{2},1^{2}$ | $420$ | $6$ | $13$ | $( 1, 4)( 2, 5, 6)( 7,19,11,13,10,20)( 8,16)(12,17,18)(14,21,15)$ |
6C | $6^{3},3$ | $840$ | $6$ | $17$ | $( 1,19,11,16, 6,17)( 2,14, 7,13,15,12)( 3, 5,10, 9,20,18)( 4,21, 8)$ |
7A | $7^{3}$ | $720$ | $7$ | $18$ | $( 1,17, 9,18,13, 6,14)( 2, 5,10, 8,16,20,15)( 3,19,11,12, 4,21, 7)$ |
10A | $10,5^{2},1$ | $504$ | $10$ | $17$ | $( 1,10,17,18, 6)( 2, 9,14,16,15, 4, 7,19,12,20)( 3,11, 5, 8,21)$ |
12A | $12,4,3,2$ | $420$ | $12$ | $17$ | $( 1, 9, 4)( 2,11,19, 3, 7,20, 5, 8,13, 6,10,16)(12,15,21,17)(14,18)$ |
Malle's constant $a(G)$: $1/5$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 7A | 10A | 12A | ||
Size | 1 | 21 | 105 | 105 | 70 | 280 | 210 | 630 | 504 | 210 | 420 | 840 | 720 | 504 | 420 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 5A | 3A | 3A | 3B | 7A | 5A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 5A | 2B | 2A | 2C | 7A | 10A | 4A | |
5 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 6C | 7A | 2A | 12A | |
7 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 1A | 10A | 12A | |
Type | ||||||||||||||||
5040.w.1a | R | |||||||||||||||
5040.w.1b | R | |||||||||||||||
5040.w.6a | R | |||||||||||||||
5040.w.6b | R | |||||||||||||||
5040.w.14a | R | |||||||||||||||
5040.w.14b | R | |||||||||||||||
5040.w.14c | R | |||||||||||||||
5040.w.14d | R | |||||||||||||||
5040.w.15a | R | |||||||||||||||
5040.w.15b | R | |||||||||||||||
5040.w.20a | R | |||||||||||||||
5040.w.21a | R | |||||||||||||||
5040.w.21b | R | |||||||||||||||
5040.w.35a | R | |||||||||||||||
5040.w.35b | R |
Regular extensions
Data not computed