Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $34$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,20,2,9,16,3,14,19,4,12,15,5,10,18,6,8,21,7,13,17), (1,3,4)(2,7,6)(8,9,13)(11,14,12)(16,19,17)(18,20,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 21: $C_7:C_3$ x 3 63: 21T7 x 3 441: 21T21 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T34 x 11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 63 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $3087=3^{2} \cdot 7^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |