Label 21T34
Degree $21$
Order $3087$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Related objects

Learn more about

Group action invariants

Degree $n$:  $21$
Transitive number $t$:  $34$
Parity:  $1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,11,20,2,9,16,3,14,19,4,12,15,5,10,18,6,8,21,7,13,17), (1,3,4)(2,7,6)(8,9,13)(11,14,12)(16,19,17)(18,20,21)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$3$:  $C_3$ x 4
$9$:  $C_3^2$
$21$:  $C_7:C_3$ x 3
$63$:  21T7 x 3
$441$:  21T21 x 3

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 7: None

Low degree siblings

21T34 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3087=3^{2} \cdot 7^{3}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.