Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $33$ | |
| Group : | $A_7$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15), (4,6,5)(9,11,10)(13,15,14)(16,18,17)(19,20,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
7T6, 15T47 x 2, 35T28, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 1 $ | $504$ | $5$ | $( 1, 2,14,17, 8)( 3, 7, 5,12,10)( 4,13,19,16, 9)( 6,15,21,18,11)$ |
| $ 7, 7, 7 $ | $360$ | $7$ | $( 1, 2,12,16,19,21,11)( 3,13,17,20,10, 6, 7)( 4,14,18, 9, 5,15, 8)$ |
| $ 7, 7, 7 $ | $360$ | $7$ | $( 1,11,21,19,16,12, 2)( 3, 7, 6,10,20,17,13)( 4, 8,15, 5, 9,18,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $105$ | $2$ | $( 1, 5)( 3, 6)( 7,14)( 8,21)( 9,19)(11,17)(12,15)(16,20)$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $70$ | $3$ | $( 1, 7, 9)( 2,13, 4)( 3,12,16)( 5,14,19)( 6,15,20)$ |
| $ 6, 6, 3, 2, 2, 1, 1 $ | $210$ | $6$ | $( 1,16, 7, 3, 9,12)( 2, 4,13)( 5,20,14, 6,19,15)(10,18)(11,17)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $630$ | $4$ | $( 1,12, 9,15)( 2, 8,13,11)( 3,16,20, 6)( 4,18)( 5,17,19,21)(10,14)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $280$ | $3$ | $( 1, 4, 9)( 2,19,11)( 3,16, 8)( 5,20, 7)( 6,13,10)(12,17,18)(14,21,15)$ |
Group invariants
| Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 . . 3 2 . 2 2 .
3 2 . . 1 . 2 2 1 .
5 1 . . . . . . . 1
7 1 1 1 . . . . . .
1a 7a 7b 2a 4a 3a 3b 6a 5a
2P 1a 7a 7b 1a 2a 3a 3b 3b 5a
3P 1a 7b 7a 2a 4a 1a 1a 2a 5a
5P 1a 7b 7a 2a 4a 3a 3b 6a 1a
7P 1a 1a 1a 2a 4a 3a 3b 6a 5a
X.1 1 1 1 1 1 1 1 1 1
X.2 6 -1 -1 2 . . 3 -1 1
X.3 10 A /A -2 . 1 1 1 .
X.4 10 /A A -2 . 1 1 1 .
X.5 14 . . 2 . -1 2 2 -1
X.6 14 . . 2 . 2 -1 -1 -1
X.7 15 1 1 -1 -1 . 3 -1 .
X.8 21 . . 1 -1 . -3 1 1
X.9 35 . . -1 1 -1 -1 -1 .
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|