Show commands: Magma
Group invariants
| Abstract group: | $C_7:(C_3\times F_7)$ |
| |
| Order: | $882=2 \cdot 3^{2} \cdot 7^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $24$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,5,6)(2,7,3)(9,10,12)(11,14,13)(15,18,17)(16,20,21)$, $(1,8,18,2,9,19)(3,10,20,7,14,17)(4,11,21,6,13,16)(5,12,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ x 4 $6$: $C_6$ x 4 $9$: $C_3^2$ $18$: $C_6 \times C_3$ $42$: $F_7$ x 2 $126$: 21T9 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T24, 42T142 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{9},1^{3}$ | $49$ | $2$ | $9$ | $( 1, 2)( 3, 7)( 4, 6)( 9,14)(10,13)(11,12)(15,21)(16,20)(17,19)$ |
| 3A1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,20,13)( 2,17,11)( 3,21, 9)( 4,18,14)( 5,15,12)( 6,19,10)( 7,16, 8)$ |
| 3A-1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,13,20)( 2,11,17)( 3, 9,21)( 4,14,18)( 5,12,15)( 6,10,19)( 7, 8,16)$ |
| 3B1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1, 9,16)( 2,12,18)( 3, 8,20)( 4,11,15)( 5,14,17)( 6,10,19)( 7,13,21)$ |
| 3B-1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,16, 9)( 2,18,12)( 3,20, 8)( 4,15,11)( 5,17,14)( 6,19,10)( 7,21,13)$ |
| 3C1 | $3^{6},1^{3}$ | $49$ | $3$ | $12$ | $( 1, 3, 4)( 2, 7, 6)( 9,12,10)(11,13,14)(15,20,19)(16,17,21)$ |
| 3C-1 | $3^{6},1^{3}$ | $49$ | $3$ | $12$ | $( 1, 4, 3)( 2, 6, 7)( 9,10,12)(11,14,13)(15,19,20)(16,21,17)$ |
| 3D1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,15,11)( 2,16,10)( 3,17, 9)( 4,18, 8)( 5,19,14)( 6,20,13)( 7,21,12)$ |
| 3D-1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,11,15)( 2,10,16)( 3, 9,17)( 4, 8,18)( 5,14,19)( 6,13,20)( 7,12,21)$ |
| 6A1 | $6^{3},1^{3}$ | $49$ | $6$ | $15$ | $( 1, 6, 3, 2, 4, 7)( 9,13,12,14,10,11)(15,17,20,21,19,16)$ |
| 6A-1 | $6^{3},1^{3}$ | $49$ | $6$ | $15$ | $( 1, 7, 4, 2, 3, 6)( 9,11,10,14,12,13)(15,16,19,21,20,17)$ |
| 6B1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1, 9,20, 3,13,21)( 2,11,17)( 4, 8,18, 7,14,16)( 5,10,15, 6,12,19)$ |
| 6B-1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,21,13, 3,20, 9)( 2,17,11)( 4,16,14, 7,18, 8)( 5,19,12, 6,15,10)$ |
| 6C1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1, 9,15, 3,11,17)( 2,10,16)( 4,12,18, 7, 8,21)( 5,13,19, 6,14,20)$ |
| 6C-1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,17,11, 3,15, 9)( 2,16,10)( 4,21, 8, 7,18,12)( 5,20,14, 6,19,13)$ |
| 6D1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,19, 9, 6,16,10)( 2,17,12, 5,18,14)( 3,15, 8, 4,20,11)( 7,21,13)$ |
| 6D-1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,10,16, 6, 9,19)( 2,14,18, 5,12,17)( 3,11,20, 4, 8,15)( 7,13,21)$ |
| 7A | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)(15,16,17,18,19,20,21)$ |
| 7B | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8, 9,10,11,12,13,14)(15,20,18,16,21,19,17)$ |
| 7C | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,11,14,10,13, 9,12)(15,20,18,16,21,19,17)$ |
| 7D | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,14,13,12,11,10, 9)$ |
| 21A1 | $21$ | $42$ | $21$ | $20$ | $( 1,13,19, 5,11,20, 2, 9,21, 6,14,15, 3,12,16, 7,10,17, 4, 8,18)$ |
| 21A-1 | $21$ | $42$ | $21$ | $20$ | $( 1,18, 8, 4,17,10, 7,16,12, 3,15,14, 6,21, 9, 2,20,11, 5,19,13)$ |
| 21B1 | $21$ | $42$ | $21$ | $20$ | $( 1,10,20, 4,11,18, 7,12,16, 3,13,21, 6,14,19, 2, 8,17, 5, 9,15)$ |
| 21B-1 | $21$ | $42$ | $21$ | $20$ | $( 1,15, 9, 5,17, 8, 2,19,14, 6,21,13, 3,16,12, 7,18,11, 4,20,10)$ |
Malle's constant $a(G)$: $1/9$
Character table
| 1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 7A | 7B | 7C | 7D | 21A1 | 21A-1 | 21B1 | 21B-1 | ||
| Size | 1 | 49 | 7 | 7 | 7 | 7 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 6 | 6 | 18 | 18 | 42 | 42 | 42 | 42 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C-1 | 3C1 | 3D-1 | 3D1 | 3C1 | 3C-1 | 3A1 | 3A-1 | 3D1 | 3D-1 | 3B1 | 3B-1 | 7A | 7B | 7C | 7D | 21A-1 | 21A1 | 21B-1 | 21B1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 7A | 7B | 7C | 7D | 7A | 7A | 7B | 7B | |
| 7 P | 1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 1A | 1A | 1A | 1A | 3B1 | 3B-1 | 3A-1 | 3A1 | |
| Type | |||||||||||||||||||||||||||
| 882.36.1a | R | ||||||||||||||||||||||||||
| 882.36.1b | R | ||||||||||||||||||||||||||
| 882.36.1c1 | C | ||||||||||||||||||||||||||
| 882.36.1c2 | C | ||||||||||||||||||||||||||
| 882.36.1d1 | C | ||||||||||||||||||||||||||
| 882.36.1d2 | C | ||||||||||||||||||||||||||
| 882.36.1e1 | C | ||||||||||||||||||||||||||
| 882.36.1e2 | C | ||||||||||||||||||||||||||
| 882.36.1f1 | C | ||||||||||||||||||||||||||
| 882.36.1f2 | C | ||||||||||||||||||||||||||
| 882.36.1g1 | C | ||||||||||||||||||||||||||
| 882.36.1g2 | C | ||||||||||||||||||||||||||
| 882.36.1h1 | C | ||||||||||||||||||||||||||
| 882.36.1h2 | C | ||||||||||||||||||||||||||
| 882.36.1i1 | C | ||||||||||||||||||||||||||
| 882.36.1i2 | C | ||||||||||||||||||||||||||
| 882.36.1j1 | C | ||||||||||||||||||||||||||
| 882.36.1j2 | C | ||||||||||||||||||||||||||
| 882.36.6a | R | ||||||||||||||||||||||||||
| 882.36.6b | R | ||||||||||||||||||||||||||
| 882.36.6c1 | C | ||||||||||||||||||||||||||
| 882.36.6c2 | C | ||||||||||||||||||||||||||
| 882.36.6d1 | C | ||||||||||||||||||||||||||
| 882.36.6d2 | C | ||||||||||||||||||||||||||
| 882.36.18a | R | ||||||||||||||||||||||||||
| 882.36.18b | R |
Regular extensions
Data not computed