Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $22$ | |
| Group : | $C_3\times \PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3)(4,9,6,8,5,7)(10,20,12,19,11,21)(13,14,15)(16,17,18), (1,8,17,15,4,21,12)(2,9,18,13,5,19,10)(3,7,16,14,6,20,11) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 168: $\GL(3,2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: $\GL(3,2)$
Low degree siblings
21T22, 24T1355 x 2, 24T1356, 42T96 x 2, 42T103 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)$ |
| $ 6, 6, 3, 3, 3 $ | $21$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7,13, 8,14, 9,15)(10,12,11)(16,19,17,20,18,21)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 7,14)( 8,15)( 9,13)(16,20)(17,21)(18,19)$ |
| $ 6, 6, 3, 3, 3 $ | $21$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,15, 9,14, 8,13)(10,11,12)(16,21,18,20,17,19)$ |
| $ 12, 6, 3 $ | $42$ | $12$ | $( 1, 2, 3)( 4, 9,11,21, 5, 7,12,19, 6, 8,10,20)(13,16,15,18,14,17)$ |
| $ 12, 6, 3 $ | $42$ | $12$ | $( 1, 3, 2)( 4, 7,10,21, 6, 9,12,20, 5, 8,11,19)(13,17,14,18,15,16)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1, 1 $ | $42$ | $4$ | $( 4, 8,12,21)( 5, 9,10,19)( 6, 7,11,20)(13,18)(14,16)(15,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 2, 3)( 4, 9,14)( 5, 7,15)( 6, 8,13)(10,20,17)(11,21,18)(12,19,16)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 3, 2)( 4, 7,13)( 5, 8,14)( 6, 9,15)(10,21,16)(11,19,17)(12,20,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $56$ | $3$ | $( 4, 8,15)( 5, 9,13)( 6, 7,14)(10,19,18)(11,20,16)(12,21,17)$ |
| $ 7, 7, 7 $ | $24$ | $7$ | $( 1, 4, 8,12,15,17,21)( 2, 5, 9,10,13,18,19)( 3, 6, 7,11,14,16,20)$ |
| $ 21 $ | $24$ | $21$ | $( 1, 5, 7,12,13,16,21, 2, 6, 8,10,14,17,19, 3, 4, 9,11,15,18,20)$ |
| $ 21 $ | $24$ | $21$ | $( 1, 6, 9,12,14,18,21, 3, 5, 8,11,13,17,20, 2, 4, 7,10,15,16,19)$ |
| $ 7, 7, 7 $ | $24$ | $7$ | $( 1, 4, 8,21,17,12,15)( 2, 5, 9,19,18,10,13)( 3, 6, 7,20,16,11,14)$ |
| $ 21 $ | $24$ | $21$ | $( 1, 5, 7,21,18,11,15, 2, 6, 8,19,16,12,13, 3, 4, 9,20,17,10,14)$ |
| $ 21 $ | $24$ | $21$ | $( 1, 6, 9,21,16,10,15, 3, 5, 8,20,18,12,14, 2, 4, 7,19,17,11,13)$ |
Group invariants
| Order: | $504=2^{3} \cdot 3^{2} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [504, 157] |
| Character table: |
2 3 3 3 3 3 3 2 2 2 . . . . . . . . .
3 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1
7 1 1 1 . . . . . . . . . 1 1 1 1 1 1
1a 3a 3b 6a 2a 6b 12a 12b 4a 3c 3d 3e 7a 21a 21b 7b 21c 21d
2P 1a 3b 3a 3a 1a 3b 6a 6b 2a 3d 3c 3e 7a 21b 21a 7b 21d 21c
3P 1a 1a 1a 2a 2a 2a 4a 4a 4a 1a 1a 1a 7b 7b 7b 7a 7a 7a
5P 1a 3b 3a 6b 2a 6a 12b 12a 4a 3d 3c 3e 7b 21d 21c 7a 21b 21a
7P 1a 3a 3b 6a 2a 6b 12a 12b 4a 3c 3d 3e 1a 3a 3b 1a 3a 3b
11P 1a 3b 3a 6b 2a 6a 12b 12a 4a 3d 3c 3e 7a 21b 21a 7b 21d 21c
13P 1a 3a 3b 6a 2a 6b 12a 12b 4a 3c 3d 3e 7b 21c 21d 7a 21a 21b
17P 1a 3b 3a 6b 2a 6a 12b 12a 4a 3d 3c 3e 7b 21d 21c 7a 21b 21a
19P 1a 3a 3b 6a 2a 6b 12a 12b 4a 3c 3d 3e 7b 21c 21d 7a 21a 21b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A /A /A 1 A A /A 1 A /A 1 1 A /A 1 A /A
X.3 1 /A A A 1 /A /A A 1 /A A 1 1 /A A 1 /A A
X.4 3 3 3 -1 -1 -1 1 1 1 . . . G G G /G /G /G
X.5 3 3 3 -1 -1 -1 1 1 1 . . . /G /G /G G G G
X.6 3 B /B -/A -1 -A A /A 1 . . . G H /I /G I /H
X.7 3 B /B -/A -1 -A A /A 1 . . . /G I /H G H /I
X.8 3 /B B -A -1 -/A /A A 1 . . . G /I H /G /H I
X.9 3 /B B -A -1 -/A /A A 1 . . . /G /H I G /I H
X.10 6 6 6 2 2 2 . . . . . . -1 -1 -1 -1 -1 -1
X.11 6 C /C F 2 /F . . . . . . -1 -A -/A -1 -A -/A
X.12 6 /C C /F 2 F . . . . . . -1 -/A -A -1 -/A -A
X.13 7 7 7 -1 -1 -1 -1 -1 -1 1 1 1 . . . . . .
X.14 7 D /D -/A -1 -A -A -/A -1 A /A 1 . . . . . .
X.15 7 /D D -A -1 -/A -/A -A -1 /A A 1 . . . . . .
X.16 8 8 8 . . . . . . -1 -1 -1 1 1 1 1 1 1
X.17 8 E /E . . . . . . -A -/A -1 1 A /A 1 A /A
X.18 8 /E E . . . . . . -/A -A -1 1 /A A 1 /A A
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = 6*E(3)^2
= -3-3*Sqrt(-3) = -3-3i3
D = 7*E(3)^2
= (-7-7*Sqrt(-3))/2 = -7-7b3
E = 8*E(3)^2
= -4-4*Sqrt(-3) = -4-4i3
F = 2*E(3)
= -1+Sqrt(-3) = 2b3
G = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
H = E(21)^2+E(21)^8+E(21)^11
I = E(21)^5+E(21)^17+E(21)^20
|