Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_7^2:S_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,21)(2,13,20)(3,14,19)(4,8,18)(5,9,17)(6,10,16)(7,11,15), (1,4)(2,3)(5,7)(8,18,12,15,9,19,13,16,10,20,14,17,11,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: None
Low degree siblings
14T15, 21T18, 42T56, 42T57, 42T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8,10,12,14, 9,11,13)(15,17,19,21,16,18,20)$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8,11,14,10,13, 9,12)(15,18,21,17,20,16,19)$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8,12, 9,13,10,14,11)(15,19,16,20,17,21,18)$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8,13,11, 9,14,12,10)(15,20,18,16,21,19,17)$ |
| $ 7, 7, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $7$ | $( 8,14,13,12,11,10, 9)(15,21,20,19,18,17,16)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,15, 9,16,10,17,11,18,12,19,13,20,14,21)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,16,11,19,14,15,10,18,13,21, 9,17,12,20)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,17,13,15,11,20, 9,18,14,16,12,21,10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $21$ | $2$ | $( 2, 7)( 3, 6)( 4, 5)( 8,18)( 9,19)(10,20)(11,21)(12,15)(13,16)(14,17)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,19,10,21,12,16,14,18, 9,20,11,15,13,17)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,20,12,17, 9,21,13,18,10,15,14,19,11,16)$ |
| $ 14, 2, 2, 2, 1 $ | $21$ | $14$ | $( 2, 7)( 3, 6)( 4, 5)( 8,21,14,20,13,19,12,18,11,17,10,16, 9,15)$ |
| $ 7, 7, 7 $ | $6$ | $7$ | $( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,17,19,21,16,18,20)$ |
| $ 7, 7, 7 $ | $6$ | $7$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)$ |
| $ 7, 7, 7 $ | $6$ | $7$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,11,14,10,13, 9,12)(15,19,16,20,17,21,18)$ |
| $ 7, 7, 7 $ | $6$ | $7$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,12, 9,13,10,14,11)(15,20,18,16,21,19,17)$ |
| $ 7, 7, 7 $ | $6$ | $7$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,10,12,14, 9,11,13)(15,19,16,20,17,21,18)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $98$ | $3$ | $( 1, 8,15)( 2, 9,21)( 3,10,20)( 4,11,19)( 5,12,18)( 6,13,17)( 7,14,16)$ |
Group invariants
| Order: | $294=2 \cdot 3 \cdot 7^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [294, 7] |
| Character table: |
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . . .
3 1 . . . . . . . . . . . . . . . . . . 1
7 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 .
1a 7a 7b 7c 7d 7e 7f 14a 14b 14c 2a 14d 14e 14f 7g 7h 7i 7j 7k 3a
2P 1a 7b 7d 7f 7a 7c 7e 7a 7c 7e 1a 7b 7d 7f 7k 7h 7g 7j 7i 3a
3P 1a 7c 7f 7b 7e 7a 7d 14b 14d 14a 2a 14f 14c 14e 7i 7j 7k 7h 7g 1a
5P 1a 7e 7c 7a 7f 7d 7b 14c 14a 14e 2a 14b 14f 14d 7k 7j 7g 7h 7i 3a
7P 1a 1a 1a 1a 1a 1a 1a 2a 2a 2a 2a 2a 2a 2a 1a 1a 1a 1a 1a 3a
11P 1a 7d 7a 7e 7b 7f 7c 14e 14c 14f 2a 14a 14d 14b 7i 7h 7k 7j 7g 3a
13P 1a 7f 7e 7d 7c 7b 7a 14f 14e 14d 2a 14c 14b 14a 7g 7j 7i 7h 7k 3a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
X.3 2 2 2 2 2 2 2 . . . . . . . 2 2 2 2 2 -1
X.4 3 A /B /C C B /A H /J I -1 /I J /H K Q M /Q L .
X.5 3 B /C A /A C /B I H J -1 /J /H /I L /Q K Q M .
X.6 3 C A B /B /A /C J I /H -1 H /I /J M Q L /Q K .
X.7 3 /A B C /C /B A /H J /I -1 I /J H K /Q M Q L .
X.8 3 /B C /A A /C B /I /H /J -1 J H I L Q K /Q M .
X.9 3 /C /A /B B A C /J /I H -1 /H I J M /Q L Q K .
X.10 3 A /B /C C B /A -H -/J -I 1 -/I -J -/H K Q M /Q L .
X.11 3 B /C A /A C /B -I -H -J 1 -/J -/H -/I L /Q K Q M .
X.12 3 C A B /B /A /C -J -I -/H 1 -H -/I -/J M Q L /Q K .
X.13 3 /A B C /C /B A -/H -J -/I 1 -I -/J -H K /Q M Q L .
X.14 3 /B C /A A /C B -/I -/H -/J 1 -J -H -I L Q K /Q M .
X.15 3 /C /A /B B A C -/J -/I -H 1 -/H -I -J M /Q L Q K .
X.16 6 D E F F E D . . . . . . . N -1 P -1 O .
X.17 6 E F D D F E . . . . . . . O -1 N -1 P .
X.18 6 F D E E D F . . . . . . . P -1 O -1 N .
X.19 6 G G /G G /G /G . . . . . . . -1 R -1 /R -1 .
X.20 6 /G /G G /G G G . . . . . . . -1 /R -1 R -1 .
A = E(7)^4+2*E(7)^5
B = 2*E(7)^4+E(7)^6
C = E(7)^2+2*E(7)^6
D = -2*E(7)-2*E(7)^2-2*E(7)^5-2*E(7)^6
E = -2*E(7)^2-2*E(7)^3-2*E(7)^4-2*E(7)^5
F = -2*E(7)-2*E(7)^3-2*E(7)^4-2*E(7)^6
G = 2*E(7)^3+2*E(7)^5+2*E(7)^6
= -1-Sqrt(-7) = -1-i7
H = -E(7)^2
I = -E(7)^3
J = -E(7)
K = -E(7)^2-E(7)^3-E(7)^4-E(7)^5
L = -E(7)-E(7)^3-E(7)^4-E(7)^6
M = -E(7)-E(7)^2-E(7)^5-E(7)^6
N = E(7)+2*E(7)^3+2*E(7)^4+E(7)^6
O = 2*E(7)+E(7)^2+E(7)^5+2*E(7)^6
P = 2*E(7)^2+E(7)^3+E(7)^4+2*E(7)^5
Q = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
R = -2*E(7)-2*E(7)^2-3*E(7)^3-2*E(7)^4-3*E(7)^5-3*E(7)^6
= (5+Sqrt(-7))/2 = 3+b7
|