Properties

Label 21T160
Order \(384072192000\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $160$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,5)(4,6)(8,15,11,20,10,18,12,21,13,16,9,17)(14,19), (1,19)(2,18,3,17)(4,20,7,15)(5,21,6,16)(9,10,12,13,14,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$
24:  $S_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 7: None

Low degree siblings

42T7897, 42T7898, 42T7899

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 475 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $384072192000=2^{12} \cdot 3^{7} \cdot 5^{3} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.