Show commands: Magma
Group invariants
| Abstract group: | $C_7:F_7$ |
| |
| Order: | $294=2 \cdot 3 \cdot 7^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $16$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,14,20,2,12,17)(3,10,21,7,9,16)(4,8,18,6,11,19)(5,13,15)$, $(1,2)(3,7)(4,6)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $14$: $D_{7}$ $42$: $F_7$, 21T3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T16, 42T55 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{9},1^{3}$ | $49$ | $2$ | $9$ | $( 1, 7)( 2, 6)( 3, 5)( 8,14)( 9,13)(10,12)(15,21)(16,20)(17,19)$ |
| 3A1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,15, 8)( 2,19,10)( 3,16,12)( 4,20,14)( 5,17, 9)( 6,21,11)( 7,18,13)$ |
| 3A-1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1, 8,15)( 2,10,19)( 3,12,16)( 4,14,20)( 5, 9,17)( 6,11,21)( 7,13,18)$ |
| 6A1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,10,20, 7,12,16)( 2, 8,17, 6,14,19)( 3,13,21, 5, 9,15)( 4,11,18)$ |
| 6A-1 | $6^{3},3$ | $49$ | $6$ | $17$ | $( 1,16,12, 7,20,10)( 2,19,14, 6,17, 8)( 3,15, 9, 5,21,13)( 4,18,11)$ |
| 7A1 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,12, 9,13,10,14,11)(15,16,17,18,19,20,21)$ |
| 7A2 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,17,19,21,16,18,20)$ |
| 7A3 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,18,21,17,20,16,19)$ |
| 7B | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)$ |
| 7C1 | $7^{2},1^{7}$ | $6$ | $7$ | $12$ | $( 1, 5, 2, 6, 3, 7, 4)(15,21,20,19,18,17,16)$ |
| 7C2 | $7^{2},1^{7}$ | $6$ | $7$ | $12$ | $( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
| 7C3 | $7^{2},1^{7}$ | $6$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,12, 9,13,10,14,11)$ |
| 7D1 | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,10,12,14, 9,11,13)(15,16,17,18,19,20,21)$ |
| 7D2 | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
| 7D3 | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,13,11, 9,14,12,10)(15,17,19,21,16,18,20)$ |
| 21A1 | $21$ | $14$ | $21$ | $20$ | $( 1,20,13, 3,21,10, 5,15,14, 7,16,11, 2,17, 8, 4,18,12, 6,19, 9)$ |
| 21A-1 | $21$ | $14$ | $21$ | $20$ | $( 1,14,18, 3,11,19, 5, 8,20, 7,12,21, 2, 9,15, 4,13,16, 6,10,17)$ |
| 21A2 | $21$ | $14$ | $21$ | $20$ | $( 1,13,21, 5,14,16, 2, 8,18, 6, 9,20, 3,10,15, 7,11,17, 4,12,19)$ |
| 21A-2 | $21$ | $14$ | $21$ | $20$ | $( 1,18,11, 5,20,12, 2,15,13, 6,17,14, 3,19, 8, 7,21, 9, 4,16,10)$ |
| 21A4 | $21$ | $14$ | $21$ | $20$ | $( 1,16, 9, 7,19,14, 6,15,12, 5,18,10, 4,21, 8, 3,17,13, 2,20,11)$ |
| 21A-4 | $21$ | $14$ | $21$ | $20$ | $( 1,12,17, 7,10,20, 6, 8,16, 5,13,19, 4,11,15, 3, 9,18, 2,14,21)$ |
Malle's constant $a(G)$: $1/9$
Character table
| 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 7A1 | 7A2 | 7A3 | 7B | 7C1 | 7C2 | 7C3 | 7D1 | 7D2 | 7D3 | 21A1 | 21A-1 | 21A2 | 21A-2 | 21A4 | 21A-4 | ||
| Size | 1 | 49 | 7 | 7 | 49 | 49 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 14 | 14 | 14 | 14 | 14 | 14 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A2 | 7A3 | 7A1 | 7B | 7C2 | 7C3 | 7C1 | 7D2 | 7D3 | 7D1 | 21A2 | 21A-2 | 21A4 | 21A-4 | 21A-1 | 21A1 | |
| 3 P | 1A | 2A | 1A | 1A | 2A | 2A | 7A3 | 7A1 | 7A2 | 7B | 7C3 | 7C1 | 7C2 | 7D3 | 7D1 | 7D2 | 7A1 | 7A1 | 7A2 | 7A2 | 7A3 | 7A3 | |
| 7 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | |
| Type | |||||||||||||||||||||||
| 294.10.1a | R | ||||||||||||||||||||||
| 294.10.1b | R | ||||||||||||||||||||||
| 294.10.1c1 | C | ||||||||||||||||||||||
| 294.10.1c2 | C | ||||||||||||||||||||||
| 294.10.1d1 | C | ||||||||||||||||||||||
| 294.10.1d2 | C | ||||||||||||||||||||||
| 294.10.2a1 | R | ||||||||||||||||||||||
| 294.10.2a2 | R | ||||||||||||||||||||||
| 294.10.2a3 | R | ||||||||||||||||||||||
| 294.10.2b1 | C | ||||||||||||||||||||||
| 294.10.2b2 | C | ||||||||||||||||||||||
| 294.10.2b3 | C | ||||||||||||||||||||||
| 294.10.2b4 | C | ||||||||||||||||||||||
| 294.10.2b5 | C | ||||||||||||||||||||||
| 294.10.2b6 | C | ||||||||||||||||||||||
| 294.10.6a | R | ||||||||||||||||||||||
| 294.10.6b1 | R | ||||||||||||||||||||||
| 294.10.6b2 | R | ||||||||||||||||||||||
| 294.10.6b3 | R | ||||||||||||||||||||||
| 294.10.6c1 | R | ||||||||||||||||||||||
| 294.10.6c2 | R | ||||||||||||||||||||||
| 294.10.6c3 | R |
Regular extensions
Data not computed