Show commands: Magma
Group invariants
| Abstract group: | $C_3^7.(C_2^7.S_7)$ |
| |
| Order: | $1410877440=2^{11} \cdot 3^{9} \cdot 5 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $152$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,18,6,2,16,5,3,17,4)(7,20,9,19,8,21)(10,11)$, $(1,20,6,9,13,3,21,5,8,15,2,19,4,7,14)(10,17,12,18,11,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $5040$: $S_7$ $10080$: $S_7\times C_2$ $322560$: 14T54 $645120$: 14T57 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: $S_7$
Low degree siblings
42T5388, 42T5389, 42T5390, 42T5391, 42T5392, 42T5393, 42T5394Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed