Properties

Label 21T152
Order \(1410877440\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $152$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,6,2,16,5,3,17,4)(7,20,9,19,8,21)(10,11), (1,20,6,9,13,3,21,5,8,15,2,19,4,7,14)(10,17,12,18,11,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5040:  $S_7$
10080:  $S_7\times C_2$
322560:  14T54
645120:  14T57

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $S_7$

Low degree siblings

42T5388, 42T5389, 42T5390, 42T5391, 42T5392, 42T5393, 42T5394

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 429 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1410877440=2^{11} \cdot 3^{9} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.