Properties

Label 21T150
Order \(705438720\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $150$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,3,5)(2,4)(7,11,14,16,9,12,15,17,8,10,13,18)(20,21), (1,9,12)(2,8,10)(3,7,11)(4,15,19,16,5,14,21,18)(6,13,20,17)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5040:  $S_7$
322560:  14T54

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $S_7$

Low degree siblings

42T4979, 42T4980, 42T4981

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 225 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $705438720=2^{10} \cdot 3^{9} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.