Properties

Label 21T145
Order \(23514624\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $145$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,3,9)(2,8)(4,11,17,13,6,10,16,15)(5,12,18,14)(19,20,21), (1,10,18,5,9,19,14,3,11,17,6,8,20,15,2,12,16,4,7,21,13)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
168:  $\GL(3,2)$
1344:  $C_2^3:\GL(3,2)$
10752:  14T50

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

42T2982, 42T2983, 42T2984, 42T2986

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 132 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $23514624=2^{9} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.