Properties

Label 21T144
Order \(22044960\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $144$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,8,3,15,7,2,14,9)(4,18)(5,17)(6,16)(10,11,12)(19,21,20), (1,6,12,18,7,20,3,4,11,17,9,19,2,5,10,16,8,21)(13,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
5040:  $S_7$
10080:  $S_7\times C_2$
30240:  21T74
7348320:  21T138

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $S_7$

Low degree siblings

21T144, 42T2921 x 2, 42T2922 x 2, 42T2923 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 261 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $22044960=2^{5} \cdot 3^{9} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.