Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $\PSL(2,7)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,6)(3,5)(7,17)(8,16)(9,18)(13,14)(19,20), (1,5,9,12,13,17,19)(2,4,8,11,15,16,20)(3,6,7,10,14,18,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: $\GL(3,2)$ x 2
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 24T284, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 5, 6)( 7,19)( 8,20)( 9,21)(11,12)(13,16)(14,17)(15,18)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $42$ | $4$ | $( 2, 3)( 4,10)( 5,11, 6,12)( 7,16,19,13)( 8,18,20,15)( 9,17,21,14)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 2, 3)( 4, 7,13)( 5, 8,14)( 6, 9,15)(10,19,16)(11,21,17)(12,20,18)$ |
| $ 7, 7, 7 $ | $24$ | $7$ | $( 1, 5, 9,12,13,17,19)( 2, 4, 8,11,15,16,20)( 3, 6, 7,10,14,18,21)$ |
| $ 7, 7, 7 $ | $24$ | $7$ | $( 1, 5,13,17,21,11, 7)( 2, 4,14,16,20,12, 9)( 3, 6,15,18,19,10, 8)$ |
Group invariants
| Order: | $168=2^{3} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [168, 42] |
| Character table: |
2 3 3 2 . . .
3 1 . . 1 . .
7 1 . . . 1 1
1a 2a 4a 3a 7a 7b
2P 1a 1a 2a 3a 7a 7b
3P 1a 2a 4a 1a 7b 7a
5P 1a 2a 4a 3a 7b 7a
7P 1a 2a 4a 3a 1a 1a
X.1 1 1 1 1 1 1
X.2 3 -1 1 . A /A
X.3 3 -1 1 . /A A
X.4 6 2 . . -1 -1
X.5 7 -1 -1 1 . .
X.6 8 . . -1 1 1
A = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
|