Properties

Label 21T139
Order \(11022480\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $139$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,2,12,3,11)(4,17)(5,16)(6,18)(7,21,13)(8,20,14)(9,19,15), (1,4)(2,5)(3,6)(7,18,10,8,16,11,9,17,12)(19,20,21)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
5040:  $S_7$
15120:  21T56
3674160:  21T130

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $S_7$

Low degree siblings

21T139, 42T2642 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 429 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $11022480=2^{4} \cdot 3^{9} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.