Properties

Label 21T138
Order \(7348320\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $138$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,2,18,3,17)(4,20,5,21,6,19)(7,9)(10,12)(13,15), (1,17,5,7,13,2,16,6,9,14)(3,18,4,8,15)(10,21,12,20,11,19)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5040:  $S_7$
10080:  $S_7\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $S_7$

Low degree siblings

42T2539, 42T2540, 42T2541

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 118 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $7348320=2^{5} \cdot 3^{8} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.