Properties

Label 21T136
Order \(5878656\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $136$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,16,3,9,17)(2,8,18)(4,14,21,6,15,19,5,13,20)(10,11,12), (1,2)(4,14,16,6,15,18)(5,13,17)(7,20,12,9,21,10,8,19,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
168:  $\GL(3,2)$
336:  14T17
1344:  $C_2^3:\GL(3,2)$
2688:  14T43

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

24T23418, 42T2487, 42T2488, 42T2489, 42T2490, 42T2491, 42T2492, 42T2493, 42T2509

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 120 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5878656=2^{7} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.