Properties

Label 21T135
Order \(5878656\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $135$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,21,13)(2,19,14)(3,20,15)(4,18,11,6,16,12,5,17,10)(7,8,9), (1,16,5,21,14,9,11,2,18,4,20,13,8,10)(3,17,6,19,15,7,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
168:  $\GL(3,2)$
336:  14T17
1344:  14T33
2688:  14T42

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

42T2480, 42T2481, 42T2482, 42T2483, 42T2484, 42T2485, 42T2486, 42T2508

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 84 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5878656=2^{7} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.