Properties

Label 21T133
Order \(5878656\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $133$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,8,11,20,6)(2,13,7,10,19,5,3,15,9,12,21,4)(17,18), (1,9,3,8)(2,7)(4,5,6)(10,21,12,20)(11,19)(13,18)(14,17)(15,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
42:  $F_7$
2688:  14T40

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $F_7$

Low degree siblings

42T2474, 42T2475, 42T2476, 42T2507

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 105 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5878656=2^{7} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.