Properties

Label 21T131
Order \(3919104\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $131$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14)(2,13)(3,15)(4,12,5,10)(6,11)(7,8,9)(16,20)(17,21,18,19), (1,6,9,10,13,18,20,3,5,7,11,15,16,19)(2,4,8,12,14,17,21)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
14:  $D_{7}$
28:  $D_{14}$
896:  14T27
1792:  14T38

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $D_{7}$

Low degree siblings

42T2321, 42T2322 x 3, 42T2323 x 3, 42T2324 x 3, 42T2325 x 3, 42T2326, 42T2327, 42T2328, 42T2329 x 3, 42T2330 x 3, 42T2331 x 3, 42T2332 x 3, 42T2333, 42T2334, 42T2335, 42T2336 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 288 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3919104=2^{8} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.