Properties

Label 21T126
Order \(2939328\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $126$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,17,10,8,2,18,12,7)(3,16,11,9)(4,20)(5,21)(6,19)(13,15), (1,5,12,13,19,9,18,2,4,10,14,20,8,17,3,6,11,15,21,7,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
168:  $\GL(3,2)$
1344:  14T33

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

42T2236, 42T2237, 42T2238, 42T2242

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2939328=2^{6} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.