Properties

Label 21T125
Order \(2939328\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $125$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,21,4,16,15,12,7,2,20,5,17,14,10,8,3,19,6,18,13,11,9), (1,10,15,3,11,14,2,12,13)(4,17,8,6,16,7)(5,18,9)(20,21)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
168:  $\GL(3,2)$
1344:  $C_2^3:\GL(3,2)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

24T22757, 42T2233, 42T2234, 42T2235, 42T2243

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 120 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2939328=2^{6} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.